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How to get reliability information of a product?
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How to get reliability information of a new product?
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Limitations of life test

To predict reliability, life tests (no matter censored
or not) need to be implemented until enough failures
occurred. However, it’s always difficult to get failure
data in life tests for high reliability and long life
products. The time and cost consumed may not be
affordable in engineering. Especially when the product
need to be released swift for market competitions.
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Merits of degradation test

Degradation test (continuous monitoring or periodic
Inspection) can often acquire performance degradation
data, which contain lots of reliability information;

For products whose failure I1s mainly caused by
degradation, it iIs possible to predict reliability by
analyzing the degradation data. Therefore, failures In
test are dispensable.
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Reliability prediction

@ Reliability prediction utilizing degradation data
Method 1 is based on degradation path;

Method 2 Is based on degradation measure distribution.
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Limitations of method 1

The model mis-specification for degradation path
may have a serious effect on the life prediction, which
will remarkably influence reliability precision as
sample’s number increases.

Similar to life test, this method only use failure time
either.
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@ Basic Assumptions
There are two basic assumptions for degrad
1. The samplings instant of all products are t

2.The degradation measures at each sam
follow a same distribution family,
distribution parameters change with time.

ation data:
Ne same.

pling Instant
and only
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Distribution Parameters Estimation

Estimation of location and scale parameter of
distribution is obtained by maximum-likelihood estimation
(MLE). The degradation amount of i product at time t is
denoted as y; and number of products Is n. SO maximum
likelihood function has the following format:

L(:Bt) = ﬁ f(yti’ﬂt)

Where S=(u,, 0)", 1, and o, are location and scale parameters
at time t. Solving MLE equation at each time, the location
and scale parameters series{. }and{c,} can be obtained.
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If degradation value y, increases
with time, failure threshold D is not
less than degradation initial value y,,
the reliability can be calculated as

Rt =1- P{yt > D}

If degradation value y, decreases
with time, failure threshold D is not
more than degradation initial value
Yo, the reliability can be calculated as

Rt =1- P{yt <D}
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A child
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Application Example

Degradation data of a product are utilized for the
application of reliability prediction method. There are 10
products with 270 hours long degradation paths. The original
data are translated into the ratio of initial value when t = 0.

1.02
1,
e Wi
Y -1‘,; W a_-'i;'j*:!', (e, )

095t M;*af"‘“‘u-ﬂm ;
i= _' ﬁﬁiﬁ b
E .‘-'-';' A "'-||..
—_ ek A ol
5 Uy O by,
= | W .t e W
5 096 e VR
0 i
=,
[ai]
]

0.94

0e2

0.9 : : ; : '
0 50 100 150 200 250 300

Time thoun



Application Example

Kolmogorov-Smirnov test proved that the location-scale
distribution for the degradation ratio data is lognormal
distribution. The mean value and variance are calculated by
MLE. The results are shown as
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@ Entire degradation data

According to failure history of this product, the failure
threshold D is selected as 90% of the initial value.
Considering that logarithm of degradation follows normal
distribution, the reliability can be calculated as

R =1-P{y, <D}
=1-P{Iny, <InD}
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@ Entire degradation data
The reliability curve from 0 to 600 hour is predicted as
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1 of polynomial regression,
WNN offers an effective
prediction for reliability,
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Merci pour votre attention!
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