A generalized Brown-Proschan model for preventive and corrective maintenance

Laurent DOYEN laurent.doyen@iut2.upmf-grenoble.fr

Jean Kuntzmann Laboratory Grenoble University France

I. Introduction

The dependability of complex repairable systems depends strongly on the efficiency of maintenance actions.

Corrective Maintenance (CM): After a failure, put the system into a state in which it can perform its function again.

Preventive Maintenance (PM): When the system is operating, intends to slow down the wear process.

Basic maintenance effect assumptions:

- As Bad As Old (ABAO): restores the system in the same state it was just before maintenance.
- As Good As New (AGAN): restores the system as if it were new.

Reality is between these two extreme cases: **Imperfect maintenance**.

Brown-Proschan model [83], CM is :

- **AGAN** with probability **p**,
- **ABAO** with probability 1 p.
- repair effects (AGAN or ABAO) are mutually independent and independent of already observed failure times.

CM effects can be characterized with random variables:

 $\boldsymbol{B_{i}} = \begin{cases} 1 & \text{if the } i^{\text{th}} \text{ CM is AGAN} \\ 0 & \text{if the } i^{\text{th}} \text{ CM is ABAO} \end{cases}$

Statistical studies when the $\{B_i\}_{i\geq 1}$ are known: Whitaker-Samaniego[89], Hollander-Presnell-Sethuraman [92], Kvam-Singh-Whitaker [02], Bathe-Franz [96], Agustin-Pena[99],...

Practical purposes : $\{B_i\}_{i\geq 0}$ are hidden variables.

- p = 0 : ABAO
- p characterizes maintenance efficiency: p = 1 : AGAN
 - 0 : imperfect

Joint assessment of CM efficiency and intrinsic wear-out: Lim [98]; Lim-Lie[00]; Lim-Lu-Park[98]; Langseth-Lindqvist [04].

Presentation aim:

- Generalize the BP model to PM effects
- Assess PM efficiency and intrinsic wear-out when PM effects are unknown
- Compute reliability indicators.

II/ A maintenance data set

PM and CM times of a subsystem of a fossil-fired thermal plant of EDF:

1179	2640	4101	5562	7023	8035	8329	8376	8393	8455
8484	8494	8605	8628	8641	8744	8903	9105	9660	9845
9846	9866	9919	9985	9987	10010	10363	10470	11021	11494
12851	12956	13662	14161	14217	14244				

III. Notations

IV. Model assumptions

- $\lambda(t)$ the failure rate of the new unmaintained system. $\Lambda(t) = \int_0^t \lambda(s) \, ds$,
- Maintenance durations are not taken into account,
- PM are done at deterministic times, all the PM times are known
- CM are done at random times, CM are observed over [c, T] (c < T)
- **CM** effects are **ABAO**,
- \bullet \mathbf{PM} effects follow a Brown-Proschan model, i.e. PM effects are :
 - mutually independent and independent of previous failure times,
 - AGAN with probability p, $B_i = \begin{cases} 1 & \text{if the } i^{\text{th}} \text{ PM is AGAN} \end{cases}$
 - **ABAO** with probability 1 p.

$$\mathbf{e}_{i} = \begin{cases} 1 & \text{if the } i & \text{PM is AGA} \\ 0 & \text{if the } i^{\text{th}} & \text{PM is ABA} \end{cases}$$

$$P(B_i = 1 \mid \underline{T}_i, \underline{B}_{i-1}) = P(B_i = 1) = p$$

V. Joint assessment of intrinsic wear-out and PM efficiency *a/ Maximum likelihood method*

Likelihood associated to a single observation of the failure process over [c, t]:

$$L_t(\theta) = f_{\underline{T}_{n_t} \mid N_t = n_t}(\underline{t}_{n_t}) P(N_t = n_t)$$

Maximum Likelihood Estimator (MLE):

$$\hat{\theta} = \arg \max_{\theta} L_T(\theta) = \arg \max_{\theta} log(L_T(\theta))$$

Notations: $L_c(\theta) = 1$

 $L_{\tau,t}(\theta) = f_{\underline{T}_{n_t-n_\tau}, N_{t-\tau}=n_t-n_\tau}(t_{n_\tau+1}-\tau, ..., t_{n_t}-\tau) \Rightarrow$ the likelihood associated to the system new in τ and observed over $[c \lor \tau, t]$.

Let us denote :
$$D_t^m = (1-p)^{m_t - m} \left[\prod_{c \lor \tau_m \le t_j \le t} \lambda(t_j - \tau_m) \right]$$

Two equivalent equations for likelihood recursive computation:

•
$$L_t(\theta) = \left[\sum_{m=0}^{m_t-} p^{\mathbbm{1}_{\{m\neq 0\}}} D_t^m e^{-(\Lambda(t-\tau_m)-\Lambda((c\vee\tau_m)-\tau_m))} L_{c\vee\tau_m}(\theta)\right]$$

 \Rightarrow forward computation algorithm.

•
$$L_t(\theta) = \left[\sum_{\tau \in \{\tau_1, \dots, \tau_{m_t}, t\}} p^{\mathbb{1}_{\{\tau \neq t\}}} D^0_{\tau_m} e^{-(\Lambda(\tau_m \lor c) - \Lambda(c))} L_{\tau_m, t}(\theta) \right]$$

 \Rightarrow backward computation algorithm.

Proof of the equation used for the forward computation:

 $\underbrace{\{B_m = 1, \{B_j = 0\}_{m < j \le m_t -}\}_{0 \le m \le m_t -}}_{\tau_m \text{ is the last AGAN PM since } t} \mathbb{O}_{m \le m_t - t} \text{ is a partition of the probability space.}$

Given $B_m = 1$, the CM process can be divided into 2 independent processes.

$$L_{t}(\theta) = \left[\sum_{m=0}^{m_{t}-} \underbrace{p^{\mathbb{I}_{\{m\neq0\}}}(1-p)^{m_{t}--m}}_{P(B_{m}=1,\{B_{j}=0\}_{m
Given $B_{m}=1,\{B_{j}=0\}_{m CM times after τ_{m} follow a NHPP initialized in τ_{m}
 $\underbrace{L_{c\vee\tau_{m}}(\theta)}_{Given B_{m}=1, \text{ maintenances before }\tau_{m} \text{ follow a BP PM-ABAO CM model}}$$$$

b/ MLE combined with moment estimation : $\lambda(t) = \alpha \beta t^{\beta-1}$

Power Law Process: $E[N_T] = \alpha(T^{\beta} - c^{\beta}) \Rightarrow \tilde{\alpha}_{\beta} = N_T/(T^{\beta} - c^{\beta}).$

BP model, $E[N_t] = \alpha S_t$, where $S_t = \sum_{\tau \in \{\tau_{m_c+1}, \dots, \tau_{m_t-}, t\}} \sum_{k=0}^{m_{\tau^-}} p^{\mathbb{1}_{\{k \neq 0\}}} (1-p)^{m_{\tau^-}-k} ((\tau - \tau_k)^{\beta} - ((\tau_{m_{\tau^-}} \lor c) - \tau_k)^{\beta})$

MLE combined with moment estimation of α : $\tilde{\alpha}_{\beta,p} = \frac{N_T}{S_T}$

$$E[\tilde{\alpha}_{\beta,p}] = \alpha$$

$$(\tilde{\beta}, \tilde{p}) = \arg \max_{(\beta,p)} \log(L_T(\tilde{\alpha}_{\beta,p}, \beta, p)) \quad \text{and} \quad \tilde{\alpha} = \tilde{\alpha}_{\tilde{\beta}, \tilde{p}}$$

 \Rightarrow Dimension reduction of the likelihood maximization space.

c/ Individual PM efficiency assessment

p characterized the **average global PM efficiency**.

The m^{th} **PM effect** can be characterized by: $\pi_m^{\theta} = P(B_m = 1 \mid N_T = n_T, \underline{T}_{n_T} = \underline{t}_{n_T})$

which verifies:

$$\pi_m^{\theta} = p \frac{L_{c \vee \tau_m}(\theta) \ L_{\tau_m, T}(\theta)}{L_T(\theta)}$$

It can naturally be estimated by: π_m^{θ}

- $L_{\tau_m}(\hat{\theta})$: intermediate computing values of the forward algorithm
- $L_{\tau_m,T}(\hat{\theta})$: intermediate computing values of the backward algorithm

$$L_t^c(\theta) = f_{\underline{T}_{n_t} \mid N_t = n_t, \underline{B}_{n_t} = \underline{b}_{n_t}}(\underline{t}_{n_t}) P(N_t = n_t | \underline{B}_{n_t} = \underline{b}_{n_t}) P(\underline{B}_{n_t} = \underline{b}_{n_t})$$

EM algorithm:

- Expectation (E) step: Compute $Q(\theta|\theta_k) = E^{\theta_k} [log(L_t^c(\theta)) | N]$
- Maximization (M) step: $\theta_{k+1} = \arg \max_{\theta} Q(\theta | \theta_k)$

$$\theta_k \underset{k \to \infty}{\longrightarrow}$$
local likelihood maxima

$$L_t^c(\theta) = \left[\prod_{n=1}^{N_t} \lambda(A_{t_n})\right] e^{-\int_c^t \lambda(A_s) ds} \left[\prod_{m=1}^{m_t} p^{B_m} (1-p)^{1-B_m}\right]$$

where A_s is the virtual age, ie the time elapsed since the last perfect PM $\forall s \in]\tau_m, \tau_{m+1}] \cap [c, T] \quad \lambda(A_s) = \prod_{i=0}^m [\lambda(s - \tau_{m-i})]^{1_{\{B_{\tau_m}^{-i}\}}}$ where $B_{\tau_m}^{-i} =$ "at time τ_m , the last AGAN PM time is τ_{m-i} "

where A_s is the virtual age, ie the time elapsed since the last perfect PM $\forall s \in [\tau_m, \tau_{m+1}] \cap [c, T] \quad \lambda(A_s) = \prod_{i=0}^m [\lambda(s - \tau_{m-i})]^{\mathbb{1}_{\{B_{\tau_m}^{-i}\}}}$ where $B_{\tau_m}^{-i} =$ "at time τ_m , the last AGAN PM time is τ_{m-i} "

$$\underbrace{E^{\theta}[log(L_{t}^{c}(\theta))|N]=Q(p|\theta)}_{L_{t}^{c}(\theta)} = \underbrace{\left[\prod_{n=1}^{N_{t}}\lambda(A_{t_{n}})\right]e^{-\int_{c}^{t}\lambda(A_{s})\,ds}}_{E^{\theta}[log(.)|N]=Q_{2}(\lambda|\theta)} \underbrace{\left[\prod_{m=1}^{m_{t}}p^{B_{m}}(1-p)^{1-B_{m}}\right]}_{E^{\theta}[log(.)|N]=Q_{1}(p|\theta)}$$

where A_s is the virtual age, ie the time elapsed since the last perfect PM $\forall s \in [\tau_m, \tau_{m+1}] \cap [c, T] \quad \lambda(A_s) = \prod_{i=0}^m [\lambda(s - \tau_{m-i})]^{1_{\{B_{\tau_m}^{-i}\}}}$ where $B_{\tau_m}^{-i} =$ "at time τ_m , the last AGAN PM time is τ_{m-i} "

•
$$Q_2$$
 function of $\pi_{m,i}^{\theta} = E^{\theta} \left[\mathbb{1}_{\{B_{\tau_m}^{-i}\}} \mid N_T = n_T, \underline{T}_{n_T} = \underline{t}_{n_T} \right]$
• Q_1 function of $\pi_{m,0}^{\theta} = \pi_m^{\theta} = E^{\theta} \left[B_m \mid N_T = n_T, \underline{T}_{n_T} = \underline{t}_{n_T} \right]$

E step: Compute for $0 \le m \le m_T$ and $0 \le i \le m$,

$$\pi^{ heta}_{m,i} = E^{ heta} \left[\mathbbm{1}_{\{B_{ au_m}^{-i}\}} \mid N_T = n_T, \underline{T}_{n_T} = \underline{t}_{n_T}
ight]$$

• $\pi_{0,0}(\theta) = 1$

• for
$$m \in \{1, ..., m_T\}, \ \pi^{\theta}_{m,0} = \pi^{\theta}_m$$

• for
$$0 \le m < m_T$$
 and $0 \le i \le m$,

$$\pi_{m+1,i+1}^{\theta} = \pi_{m,i}^{\theta} - p^{1+1}_{\{m>i\}}(1-p)^{i} \left[\prod_{(c \lor \tau_{m-i}) < t_{j} \le \tau_{m+1}} \lambda(t_{j} - \tau_{m-i}) \right] e^{-(\Lambda((c \lor \tau_{m+1}) - \tau_{m-i}) - \Lambda((c \lor \tau_{m-i}) - \tau_{m-i}))} \frac{L_{c \lor \tau_{m-i}}(\theta) L_{\tau_{m+1},T}(\theta)}{L_{T}(\theta)}$$

M step: $\lambda(t) = \alpha \beta t^{\beta-1}$

•
$$p_{k+1} = \left[\sum_{m=1}^{m_T} \pi_{m,0}^{\theta_k}\right] / m_T$$

• $\beta_{k+1} = \arg \max_{\beta} \left[n_T \left(\log(n_T \beta) - \log(S_k(\beta)) \right) + (\beta - 1) \right] \left[\sum_{\tau \in \{\tau_{m_c+1}, \dots, \tau_{m_T-\tau}, T\}} \sum_{i=0}^{m_{\tau^-}} \pi_{m_{\tau^-}, m_{\tau^-}-i}^{\theta_k} \sum_{(c \lor \tau_{m_{\tau^-}}) < t_j \le \tau} \log(t_j - \tau_i) \right] \right]$
with $S_k(\beta) = \sum_{\tau \in \{\tau_{m_c+1}, \dots, \tau_{m_T-\tau}, T\}} \sum_{i=0}^{m_{\tau^-}} \pi_{m_{\tau^-}, m_{\tau^-}-i}^{\theta_k} ((\tau - \tau_i)^\beta - ((c \lor \tau_{m_{\tau^-}}) - \tau_i)^\beta)$

• $\alpha_{k+1} = n_T / S_k(\beta_{k+1})$

VI. Reliability indicators

ISBIS-2010

• Failure intensity: $\lambda_t = \lim_{\Delta t \to 0} \frac{1}{\Delta t} P(N_{t+\Delta t} - N_{t-} | \underline{T}_{N_{t-}}, N_{t-})$

$$\lambda_t = \frac{\sum_{m=0}^{m_t-} D_{C_{K_{t-}}}^m e^{-(\Lambda(t-\tau_m) - \Lambda((c \vee \tau_m) - \tau_m)} L_{c \vee \tau_m}(\theta)}{\sum_{m=0}^{m_t-} D_{C_{K_{t-}}}^m \lambda(t-\tau_m) e^{-(\Lambda(t-\tau_m) - \Lambda((c \vee \tau_m) - \tau_m)} L_{c \vee \tau_m}(\theta)}$$

• Cumulative failure intensity: $\Lambda_t = \int_0^t \lambda_s \, ds$

$$\Lambda_t = -\left[\sum_{k=1}^{K_t} \log\left(\frac{L_{C_k^-}(\theta)}{L_{C_{k-1}^+}(\theta)}\right)\right] - \log\left(\frac{L_{t^-}(\theta)}{L_{C_{K_t}^+}(\theta)}\right)$$

- Reliability: $P(T_{N_T+1} > s \mid \underline{T}_{N_T}, N_T) = exp(-(\Lambda_s \Lambda_T))$
- Expected cumulative number of failures: $E[N_s | \underline{T}_{N_T}, N_T] =$

$$N_T + \left[\sum_{i=m_T+1}^{m_s} (\Lambda(s-\tau_i) + E[N_{\tau_i^-} | \underline{T}_{N_T}, N_T] - N_T)p(1-p)^{m_s-i}\right] \\ + \left[\sum_{i=0}^{m_T} (\Lambda(s-\tau_i) - \Lambda(T-\tau_i))(1-p)^{m_s-m_T} \pi_{m_T,m_T-i}^{\theta}\right]$$

VII. Application

The BP PM-ABAO CM model is implemented in **MARS** (Maintenance Assessment of Repairable Systems): a free software developped by LJK (Grenoble university) and EDF (French electricity utility).

Correct de finde set Made set DP Deta monitoring Window et DP Deta monitoring Window et DP Deta monitoring Window et de CD Deta set CD De	MAR	S2 V0.63 - /hom	ne/doyen/Mars/Mars2/Projects/essai.pj				
Data set window Dita Bit Tarnform Dita manform Data set window Dita P Rel Lata: Dita Origo Origo Dita Origo Dita Dita Dita Dita Dita Origo Dita Dita Dita <td< th=""><th>oject Edit Data set Models Help</th><th></th><th></th></td<>	oject Edit Data set Models Help						
<pre>ibile Edit Transform</pre>	Data set window		Nodels window				
Data Name DE Vectore the Maintanacces Description Maintanacces Name DE Provertise Maintanacces Name DE Description Maintanacces Description Maintanacces Name DE Description Maintanacces Description Maintanacces Name DE Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces PM Efficiency of data set EDF Description Maintanacces Description Maintanacces Description Maintanacces Definition of data set EDF Description Maintanacces Description Maintanacces Description Maintanacces Definition of data set EDF Description Maintanacces Description Maintanacces Description Maintanacces Definition of data set EDF Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanacces Description Maintanaces Description Maintanaces Descripti	le Edit Transform		Estimators Indicators Simulator Validator PM optimization				
P simulated Data P s	Data ✓ ▼ Real Data Name ▼ Corrective & Preventive Mai Type EDF Origin Corrective Maintenances Write Protected □		EDF Data sets Clear				
<pre>times ty 1 1179 PM 1 1179 PM 2 240 A010 PM 3 401 PM 1 2 200 PM 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	Preventive Maintenances Number of data 36 ♀		EDF				
alpha [5,44772e-05] init. [5,448e-05] common fixed Ø min 1e-10 max 0 PM Efficiency of data set EDF [1179 2640 101 552 7023 [18484 1010 [11442 2255 3662 0.488968 init. 0.5 common fixed Ø min 0 Ø max 1 beta 1.52007 init. 0.5 common fixed Ø min 0 Ø max 1 p 0.488968 init. 0.5 common fixed Ø min 0 Ø max 1 beta 1.52007 init. 0.5 common fixed Ø min 0 Ø max 1 beta 1.52007 motoring window Imax Im	times ty 1 1179 PM 2 2640 PM 3 4101 PM C m Save data set Plot		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
PM Efficiency of data set EDF		Goto	alpha 5,44772e-05 init. 5,448e-05 common _ fixed 🗹 min 1e-10 🗆 max 0				
Procermonicoring window E Edit Zoom Move Data set EDF Cumulative number of failures: Data set EDF Cumulative number of failures: Data set EDF Outous set EDF Outo	PM Efficiency of data set EDF index 1 2 3 4 5 10 6 7 8 9 t 1179 2640 4101 5562 7023 10 4484 10010 11494 1295 i 0.4894 0.4705 0.3910 0.2166 0.0367 10 4.142e-05 0.8863 0.9419 0.863	10 5 13662 2 0.4941	beta 1.52007 init. 1.5 Common ined init. 1.6 p 0.488968 init. 0.5 common fixed init. 0 init. Log L -151.925 Options Nelder-Mead Estimate >> >>				
File Edit Zoom Move Pata set EDF Cumulative number of failures 2 Data set EDF Data set EDF							
e Edit Zoom Move Betrinking without the second sec	Data monitoring window						
Image: Constraint of the constraint o	e <u>E</u> dit <u>Z</u> oom <u>M</u> ove						
hata set EDF Data set EDF Data set EDF Data set EDF Data set EDF 0 000 0 1000 2000 3000 4000 5000 6000 7000 8000 900 1000 12000 times	a 🗠 🎟 💌 🕴 🔤 🕀 🔍 🔍 🗋 🏷		Model Weibull CM:As Bad As Old PM:Brown Proschan				
Data set EDF 20 0 1000 2000 3000 4000 5000 6000 700 800 900 1000 12000 times	Data set EDF Cumulative num	oer of failures 🗘	0.007				
5 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 12000 12000 10000 12000 12000 1000 12000 13000 Data set - EDF	20 10 10 10 10 10 10 10 10 10 1		0.006 0.005 0.004 0.003 0.002 0.001				
	5 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 times	12000	0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 Data set - EDF				
urrant Doint (5676 576 12 42272)	urrent Doint (5676 576-12 40072)						

ISBIS-2010

• MLE combined with moment estimation:

$$\tilde{\alpha} = 1.84 \times 10^{-6}, \quad \tilde{\beta} = 1.95, \quad \tilde{p} = 0.602, \quad log(\mathcal{L}_T(\tilde{\alpha}, \tilde{\beta}, \tilde{p})) = -150.900$$

• MLE computed with EM algorithm or direct maximization:

$$\hat{\alpha} = 1.87 \times 10^{-6}, \quad \hat{\beta} = 1.94, \quad \hat{p} = 0.614, \quad log(\mathcal{L}_T(\hat{\alpha}, \hat{\beta}, \hat{p})) = -150.902$$

Wearing out state at time $c \Rightarrow$ failures surge

ISBIS-2010

Quality of estimation: $\theta = (1.9e - 6, 1.9, 0.61)$

NEB: Normalized Empirical Bias NESD: Norm. Emp. Standard Deviation $\} \Rightarrow \begin{array}{l} \text{estimated over} \\ 60 \ 000 \ \text{simulations} \end{array}$ θ^* : MLE estimator when the B_i are known

Initial intensity:
$$\lambda(t) = \alpha \beta t^{\beta-1}$$
 or $\lambda(t) = \beta/\eta (t/\eta)^{\beta-1}$

EM is more robust than direct likelihood maximization

	NEB				NESD			
	α	η	eta	p	α	η	eta	p
$ ilde{ heta}$	590%	36%	8.2%	-9.4%	3300%	130%	35%	50%
$\hat{ heta}$	580%	37%	9.2%	-12%	3300%	130%	36%	51%
θ^*	18000%	-24%	-12%	0%	5000%	35%	22%	25%

Quality of individual PM efficiency estimation:

	Empirica	al mean	Empirical standard deviation		
$m^{ ext{th}} ext{ PM}$	$\pi_m^{ ilde{ heta}} - B_m$	$\tilde{p} - B_m$	$\pi_m^{ ilde{ heta}} - B_m$	$\tilde{p} - B_m$	
1	-7.8 e-2	-5.4 e-2	5.8 e-1	5.8 e-1	
2	-9.3 e-2	-5.8 e-2	5.9 e-1	5.8 e-1	
3	-9.4 e-2	-5.8 e-2	5.9 e-1	5.7 e-1	
4	-6.8 e-2	-5.8 e-2	6.0 e-1	5.6 e-1	
5	-4.3 e-2	-5.6 e-2	5.3 e-1	5.2 e-1	
6	-3.7 e-1	-6.1 e-2	6.4 e-1	5.8 e-1	
7	-1.3 e-2	-5.8 e-2	2.8 e-1	4.6 e-1	
8	7.2 e-3	-5.8 e-2	3.9 e-1	5.1 e-1	
9	9.4 e-4	-5.4 e-2	4.0 e-1	5.2 e-1	
10	-8.5 e-3	-5.5 e-2	4.7 e-1	5.5 e-1	
Mean	-7.5 e-2	-5.7 e-2	5.1 e-1	5.4 e-1	

 \Rightarrow Individual PM efficiency estimation is relevent after c

Laurent DOYEN

Cumulative failure intensity and number of failures for $\theta = \hat{\theta}$

VIII. Prospects

- Maintenance times optimization
- Consider a more general distribution over $] \infty, 1]$ for the B_i .
- Develop confidence intervals and tests for the BP model

• ...

References

- Agustin MZN and Peña EA. Order statistics properties, random generation, and goodness-of-fit testing for a minimal repair model. *Journal of American Statistical Association* 1999; **94**: 266-272.
- Bathe F and Franz J. Modeling of repairable systems with various degrees of repair. Metrika 1996; 43: 149-164.
- Brown M and Proschan F. Imperfect repair. Journal of Applied Probability 1983; 20: 851-859.
- Kumar U and Klefsjö B. Reliability analysis of hydraulic systems of LHD machines using the power law process model. *Reliability Engineering and System Safety* 1992; **35**: 217-224.
- Kvam PH, Singh H and Whitaker LR. Estimating distributions with increasing failure rate in an imperfect repair model. *Lifetime Data Analysis* 2002; 8: 53-6.
- Hollander M, Presnell P and Sethuraman J. Nonparametric methods for imperfect repair models. *The Annals of Statistics* 1992; **20**: 879-896.
- Langseth H and Lindqvist BH. A maintenance model for components exposed to several failure mechanisms and imperfect repair. In *Mathematical and Statistical Methods in Reliability*, B.H. Lindqvist, K.L. Doksum (eds). World Scientific: 2004; 415-430.
- Lim JH, Lu KL, Park DH. Bayesian imperfect repair model. Communications in Statistics Theory and Methods 1998; 27: 965-984.
- Lim TJ. Estimating system reliability with fully masked data under Brown-Proschan imperfect repair model. *Reliability Engineering and System Safety* 1998; **59**: 277-289.
- Lim TJ and Lie CH. Analysis of system reliability with dependent repair modes. *IEEE Transactions on reliability* 2000; **49**: 153-162.
- Whitaker LR and Samaniego FJ. Estimating the reliability of systems subject to imperfect repair. *Journal of American Statistical Association* 1989; 84: 301-309.