

Activités de l'unité de recherche ETNA d'Irstea en lien avec les questions fiabilistes

<u>N. Eckert</u> Irstea, UR ETNA & Université Grenoble-Alpes 38402 Saint Martin d'Hères, France Journée du Groupe de Travail et de Réflexion en fiabilité de Grenoble 25 septembre 2014 Grenoble, France

Contributions / ideas:

- E. Parent, AgroParisTech, Paris
- D. Bertrand, INSA Lyon
- J. Gaume, SLF Davos (Suisse)
- P. Favier, M. Naaim, I. Ousset, T. Faug, D. Richard, JM Tacnet, F. Bourrier..., Irstea Grenoble

• Présentation rapide des activités d'ETNA

- Panorama (non exhaustif) des liens avec les questions fiabilistes
- Analyses « plus ou moins classiques » des structures soumises à « nos » alea
- Courbes de fragilité
- Analyse fiabiliste des conditions d'occurrence des aléas
- Modélisation numérico-probabiliste multivariée des aléas
- Analyse de risque, calcul décisionnels et indicateurs agrégés

 Une application (un peu) plus détaillée : la gestion à long terme du risque avalanche

L'unité de recherche ETNA

Recherche et expertise en ingénierie pour la prévention des risques naturels en montagne

développer des connaissances et élaborer des outils applicables à l'ingénierie et à la prévention des risques naturels en montagne

UR ETNA : la démarche (1)

Approche par phénomènes

- ✓ Des mouvements gravitaires rapides
 - Ecoulements torrentiels
 - Avalanches
 - Chutes de blocs

 Des phénomènes initiateurs ou induits par les mouvements gravitaires rapides

Transport de la neige par le vent
Vague produite par l'impact dans une retenue

UR ETNA : la démarche (2)

Pour chaque phénomène sont étudiés:

- •formation et déclenchement
- dynamique
- interaction avec des obstacles ou des structures
- les risques induits

L'approche est très pluridisciplinaire:

Caractérisation des matériaux naturels (rhéologie, etc.)
Simulation numérique et numérico-probabiliste
Etude expérimentale sur sites de terrain et en laboratoire
Données historiques (EPA, CLPA): apprentissage statistique

UR ETNA : la démarche (3)

and the second

Les phénomènes et les ouvrages sont étudiés à différentes échelles :

- élémentaire: lois de comportement et lois d'interfaces, instabilités
- locale : interaction entre un phénomène et une structure
- globale : pour étudier le phénomène sur l'ensemble du site à risque
- régionale: lien avec le climat, inférence spatio-temporelle

UR ETNA : les laboratoires (1)

Ex 1: La soufflerie

Un outil d'étude et de modélisation du transport éolien de particules

UR ETNA : les laboratoires (2)

Ex 2: Le tapis roulant

• Etude des fronts de laves torrentielles

UR ETNA : les sites expérimentaux (1)

Ex 1:: Le col du Lautaret

• Un site d'étude et de déclenchement des avalanches grandeur nature

UR ETNA : les sites expérimentaux (2)

Ex 2: Le site expérimental du Col du Lac Blanc

• Une soufflerie naturelle

UR ETNA versus TR RIVAGE

• Présentation rapide des activités d'ETNA

- Panorama (non exhaustif) des liens avec les questions fiabilistes
- Analyses « plus ou moins classiques » des structures soumises à « nos » aleas
- Courbes de fragilité
- Analyse fiabiliste des conditions d'occurrence des aléas
- Modélisation numérico-probabiliste multivariée des aléas
- Analyse de risque, calcul décisionnels et indicateurs agrégés

Une application (un peu) plus détaillée : la gestion à long terme du risque avalanche

Vulnérabilité des bâtiments aux aléas

- Technologie de structure (elements structuraux, assemblage, etc.)

- Propriétés mécaniques des matériaux utilisés

 $\mathcal{V}(\mathcal{E})$ \square

Maçonnerie

Béton armé

Structures métalliques

Structures bois

Modélisation des structures en BA

Avantages

- Calcul dynamique
- Prise en compte des effets d'inertie potentiels
- Description dans le temps du chargement (P(t))

Inconvénients

- Conditions aux limites réduites (pour le SDOF)
- Problèmes 3D plus complexe à traiter
- Plus couteux en temps de calcul

Simulation FEM (Favier et al., 2014)

Méthodes SDOF (single degree of freedom) et FEM

Analyse fiabiliste : calcul de la proba. de défaillance

$$\mathcal{P}_f = \operatorname{Prob}[G(\mathbf{x}) \le 0] = \int_{\mathcal{D}_f} f_X(\mathbf{x}) dx$$

 $f_X(x)$: densité de proba. des variables d'entrées D_f : domaine de défaillance G(x) : critère de défaillance

Vulnerability and fragility

- vulnerability relations : deterministic point of view, fraction of the studied element at risk destroyed according to solicitation intensity;
- fragility relations : probability of the entire element at risk to be destroyed according to a given solicitation intensity (a conditional expectation!).

Fragility definition:

- Makes sense for humans;
- Enables to take into account uncertainties (physical reliability framework);
- Copes for variability among a class of similar elements at risk: systematic risk assessment.

Fig. Vulnerability relationship between debris flow intensity x and vulnerability y expressed by a second order polynomial (Fuchs *et al.*, 2007)

Fig. Fragility curves for a moderate limit state for RC buildings under seismic solicitations (Lagaros *et al.*, 2008)

Evaluating fragility curves

A model to summarize the building behaviour:

- RC slab with different boundaries conditions;
- Quasi-static problem (maximal Pressure is the only critical variable)

Application of reliability theory:

- Probabilistic descriptions of renforced concrete are avalaible (Structura safety, 2001);
- Small variability of geometrical variables;
- Reliability techniques to reconstruct the failure probability as function of pressure;
- Specific trick: the V function can be seen as a cdf!
- Sobol indexes (variance decomposition) for sensitivity analysis (with independant inputs).

Probabilistic assessment of rerelease susceptibility

Method

Mechanically-based statistical model of slab avalanche release Gaume et al. (GRL 2012, JOG 2013)

This model takes into account, in particular:

- the spatial variations of WL mechanical properties (shear strength)
- (2) a shear quasi-brittle constitutive law for the WL
- (3) stress redistribution effects by elasticity of the slab

Slope stability evaluation

Hazard multivariate statistical-numerical modelling

Not "fully explicit", but multivariate and with real topography and "robust" physics to constrain covariance between outputs

Modelling issues:

- Deterministic propagation model
- Stochastic modelling of the correlated random input vector (~Multivariate POT / stochastic generator) : variability and/or uncertainty!

Technical issues:

- Inference with a complex model, non invertible model
- Simulation: physical reliability like framework (fast approximation of small probabilities)

Example 1: snow avalanches

Model and case study from Eckert et al. (2010). The statistical-dynamical model is calibrated on the local data (MCMC techniques). It provides the one-to-one relation between runout distance and return period, and, for each runout distance/return period, the joint distribution of all other variables. Impact pressure is computed following Naaim et al. (2008), taking the rheology of snow into account.

Example 2: Rockfall

Probability for the occurrence of a rockfall event in all points of the study site, from Bourrier et al., NHESS 2009

Example 3: debris flows

Evaluation quantitative du risque

Modèle probabiliste d'aléa multivarié

Courbes de fragilité

$$R_w = \sum_w q(z_w) z_w \int p(y) V(z, y) dy$$

Théorie statistique (économétrique) du risque :

- choix d'une statistique résumé de la fonction de perte (ici MLE-CTE)
- Approximations numériques pour des probabilités d'aléa faibles
- Calcul d'incertitudes
- Cadre fiabiliste!

Decisional framework to risk minimization

• Risk can be modified by a (possibly multidimensional) decisional variable *d*. Possible additive formulation (inspired by Van Dantzig, 1956):

$$R_{w}(d) = C_{o}(d) + \sum_{z \in W} (z_{w}|d) q(z_{w}|d) \int p(y|d) V(z, y) dy$$

- Decision may affect hazard, elements at risk, but not their vulnerability
- Optimal decision minimizes the risk (paradigm of maximizing expected utility): Von Neuman and Morgenstern (1953); Prat et al., 1964; Raiffa (1968)
- Classical application: Bayes point estimates: $E_{\theta} \left[p(\theta|y) \right] = \operatorname{Argmin} \left(\int (\theta \theta_o)^2 p(\theta|y) d\theta \right)$

Avalanche risk zoning limits by loss minimisation (Eckert et al., in prep)

Integrated assessment of protective structures efficiency

Need for integrated indicators mixing information of various nature and quality, results of uncertainty analyses, expert knowledge, etc.

Application to debris flow risk management

Indicators, information imperfection, decision-making methods (Tacnet and Curt, Annales ITBTP, 2011)(Tacnet et al., Envt Systems and Decisions, 2014) • Présentation rapide des activités d'ETNA

- Panorama (non exhaustif) des liens avec les questions fiabilistes
- Analyses « plus ou moins classiques » des structures soumises à « nos » alea
- Courbes de fragilité
- Analyse fiabiliste des conditions d'occurrence des aléas
- Modélisation numérico-probabiliste multivariée des aléas
- Analyse de risque, calcul décisionnels et indicateurs agrégés

• Une application (un peu) plus détaillée : la gestion à long terme du risque avalanche

Avalanche risk mitigation

Avalanche numerical simulation for hazard mapping

Passive defense structure

"Reference hazards" in the snow and avalanche field

Legal thresholds for land use planning based, like in hydrology, on <u>return periods and</u> <u>corresponding return levels</u>: 100 years in France, 30-300 years in Swiss, up to 1,000 years in Iceland...

<u>Multivariate definition</u> : runout distance (travelled distance) / impact pressure

Montroc (Haute Savoie, France), 9 February 1999, building moved and destroyed

A statistical-numerical multivariate POT model

Joint modelling of the observable and latent input variables using conditional modelling: release position and depth, and latent friction coefficient Transfer function: avalanche propagation as a depth averaged fluid (Naaim et al., 2004)

Gaussian differences between observed and simulated runout distances

Independent modelling of avalanche magnitude and number of occurrences/exceedences: Efficient "pseudo POT model" (Eckert et al., JOG 2010)

Return period for the runout distance

Case-study

- Bessans township (Savoie department);
- EPA path number 13;
- 41 occurrence data over 44 winters;
- Among them, 26 reliable release/runout altitudes;
- Deposit volume dimensions;
- Supplemented by Safran/crocus input data (meteo France).

Simulation: joint distribution of model variables

$$p\left(x_{stop}, v, h... \middle| \stackrel{\wedge}{\theta_M}\right) = \int p\left(x_{start} \middle| \stackrel{\wedge}{a_1, a_2}\right) \times p\left(h_{start} \middle| \stackrel{\wedge}{b_1, b_2, \sigma_h, x_{start}}\right) \times p\left(x_{stop} \middle| x_{start}, h_{start}, \mu, \mathring{\xi}\right) \times d\mu$$

Monte Carlo simulations:

- standard Monte Carlo scheme: slow \sqrt{n} convergence speed
- accelerated (directional or others) Monte Carlo methods: faster convergence
- integration over hidden variables

Joint distribution of the variables of the non fully explicit avalanche magnitude model

Runout distance and return periods

Return period for each abscissa combining:

- a point estimate of the mean avalanche occurrence/threshold exceedence number λ
- the estimated runout distance cdf $\hat{F}(x_{stop})$

Joint distribution $P(v, h, \mu.. | x_{stop} > x_{stopT})$

Validation of model predictions?

Independent "fossil" data from tree ring sampling campaigns :

- Complement EPA database (longer period);
- Can help to validate the statistical- dynamical predictions

Château Jouan avalanche path, French Alps. Maximal extent and observation threshold in historical chnonicle (EPA database) from Schläppy et al., AAAR 2013

Runout distance – return period relationships for two French paths, from Schläppy et al. (CRST 2014). Tree-ring reconstructions versus statistical-numerical predictions.

Estimation: Bayesian inference for the magnitude model

Bayes' theorem for parameters and latent variables:

Conditional specification of the model:

Deterministic propagation:

$$p(\theta_{M}, \mu, x_{stop_{cal}} | data, \sigma_{num})$$

$$\propto p(\theta_{M}) \times \prod_{i=1}^{N} \left(l\left(x_{start_{i}}, h_{i}, x_{stop_{i}} | \theta_{M}, \mu_{i}, x_{stop_{cal_{i}}}, \sigma_{num}\right) \times p\left(\mu_{i}, x_{stop_{cal_{i}}} | \theta_{M}, x_{start_{i}}, h_{i}, x_{stop_{i}}, \sigma_{num}\right) \right)$$
Prior Likelihood Distribution of latent variables

$$l\left(x_{start_{i}},h_{i},x_{stop_{i}}\left|\theta_{M},\mu_{i},x_{stop_{cal_{i}}},\sigma_{num}\right)=l\left(x_{start_{i}}\left|a_{1},a_{2}\right)\times l\left(h_{i}\left|b_{1},b_{2},\sigma_{h},x_{start_{i}}\right)\times l\left(x_{stop_{i}}\left|\sigma_{num},x_{stop_{cal_{i}}}\right)\right)$$

$$p\left(\mu_{i}, x_{stop_{cal_{i}}} \middle| \theta_{M}, x_{start_{i}}, h_{i}, x_{stop_{i}}, \sigma_{num}\right) = p\left(\mu_{i} \middle| c, d, e, \sigma, x_{start_{i}}, h_{i}\right) \times \delta\left(G(x_{start_{i}}, h_{i}, \mu_{i}, \xi)\right)$$

MCMC simulations:

- Gibbs and sequential MH within Gibbs;
- Tuned by adapting jump strength (subtle in practice);
- Converge diagnosis: Gelman and Rubin test.

Computationally intensive, solved in a (rather) efficient way

MCMC sequence for two model parameters with low and high autocorrelation, respectively

Posterior distributions of magnitude model parameters

- Friction coefficient ζ and parameters describing the variability of the input variables

- Prior / posterior update: introduction of expertise into the modelling!
- Point estimates and associated uncertainty available for simulation.

Uncertainty quantification : Bayesian predictive percentiles

- Predicted percentile/return period averaged over posterior pdf (Eckert et al., SERRA 2008): $p(x_{stop_{q}} | data) = \int F_{x_{stop}|\theta_{M}}^{-1} (q/100) \times p(\theta_{M} | data) \times d\theta_{M}$ $p(x_{stop_{T}} | data) = \int F_{x_{stop}|\theta_{M}}^{-1} (1 - \frac{1}{\lambda T}) \times p(\theta_{M} | data) \times p(\lambda | data) \times d\theta_{M} \times d\lambda$
- Fair representation of uncertainty associated to the limited data quantity;
- Alternative method to delta-like methods under the classical paradigm;

Courbes de fragilité pour les structures BA (1)

Un exemple: dalle encastrée sur 3 côtés

Courbe de fragilité pour l'ensemble des critères (Favier et al. NHESS 2013)

Critère ULS

Courbes de fragilité pour les structures BA (2)

Effet des conditions aux limites / typologies de structures (Favier et al. NHESS 2013)

Application to risk mapping

b

Individual risk approach for a fully exposed standalone people or a building :

$$R_{z} = z \int p(y) V(z, y) dy$$

with z=1 (not dimensionless)

Risk model and case study from Cappabianca et al., 2008. The risk for buildings/people is expressed as an annual probability of destruction/death respectively.

Hazard model is a statistical-dynamical model with simplifying assumptions for input variables randomness, and impact pressure evaluation as a function of the position in the path.

Numerical simulations are performed along a 1-D profile but lateral spread is taken into account.

Vulnerability model links the survival/destruction probability to avalanche impact pressure.

Vulnerability sensitivity and risk bounds

Optimal design of an avalanche dam

Model for the dam effects

(Frequentist) Optimal design

Calibration, parameter uncertainty and Bayesian risk

Classical optimal design with *plug-in* point estimates:

- separates estimation and decision, and neglects parameter uncertainty;
- do not necessarily respects suitable properties such as *admissibility*.

Bayesian estimation, Bayesian risk and Bayesian optimal design:

- Strong link between Bayesian inference and decision theory (Berger, 1985);
- Specifically, a Bayes rule (average over posterior pdf) is "always" admissible and, reciprocally, an admissible rule is a (generalised) Bayes rule (Complete Class theorem, Wald, 1950);
- Practical way to propagate data uncertainty up to decision (de Groot, 1970);
- Robustness of Bayesian optimal design to loss function choice (Abraham and Cadre, 2004).

Pour en savoir plus... quelques liens et un peu de pub!

Le site de l'UR ETNA: <u>http://www.irstea.fr/etgr</u>

 La plateforme <u>www.avalanches.fr</u>, et notamment l'onglet<u>:</u> <u>http://www.avalanches.fr/mopera-</u> projet/

- Soutenance de la thèse de Philomène Favier lundi 1" octobre a Irstea: « Une approche intégrée du risque avalanche : quantification de la vulnérabilité physique et humaine et optimisation des structures de protection »
- <u>Merci:</u>
- Pour votre attention
- aux organisateurs (invitation)
- Aux financeurs : ANR, Union européenne, etc.