Pronostic pour la Maintenance

surveillance, pronostic et maintenance conditionnelle

Mitra Fouladirad

Troyes University of Technology

15/05/14

Plan

Formalisation

Pronostic pour la maintenance

3 La mise en place du concept de pronostic

- Prévision du comportement futur et de la durée de vie d'un système
- Objectif principal : calculer la durée de vie résiduel (RUL) en prenant compte des données de surveillance
- Abondance des méthodes d'estimation de la durée de vie résiduelle,
- Très peu de travaux considèrent cette quantité pour la prise de décision de maintenance.
- Quantité pas proprement définie, dans le sens où il existe plusieurs définitions possibles de la durée de vie résiduelle.
- Point important : surveillance donc données bruitées
- Filtrage

Formalisation

- X_t l'état du système à l'instant t
- $X = (X_t)_{t \in \mathbb{R}_+}$ à valeurs dans l'espace de probabilité (E, ε) .
- Une partition de l'espace $E=\mathcal{U}\cup\bar{\mathcal{U}}$, définissant la zone utile \mathcal{U}
- Quantité d'intérêt pour le pronostic : le temps restant avant de sortir de la zone U, i.e. the Remaining Useful Life :

$$\mathcal{RUL}_t = \inf\{s \ge t, \quad X_s \notin \mathcal{U}\} - t$$
 (1)

RUL et surveillance

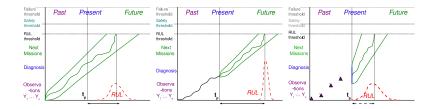


FIGURE: Illustration du concept de pronostic pour différents types d'observation

Formalisation en présence d'observations bruitées

- Le système est inspecté aux instants t_k , $k \in \mathbb{N}^*$,
- Y_{t_k} observation à t_k ,
- ullet X_{t_k} l'état du système à t_k
- $Y_i = g_i(X_{t_i}) + \epsilon_i$;
- \mathcal{RUL}_{t_k} la variable aléatoire représentant la durée de vie résiduelle à l'instant t_k ,
- On s'intersse à la loi de la RUL

$$\mathcal{L}(\mathcal{RUL}_{t_k}|Y_1=y_1,\cdots,Y_n=y_n). \tag{2}$$

Distribution de la RUL :

$$F_{\mathcal{RUL}_{t_k}}(h) = \mathbb{P}(\mathcal{RUL}_{t_k} < h) = \mathbb{P}(X_{t_k+h} \in \bar{\mathcal{U}}|Y_{t_1}, ..., Y_{t_k})$$

RUL

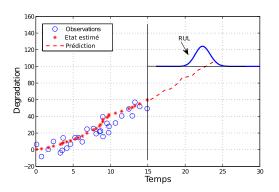


FIGURE: Estimation de la densité de la RUL avec des observations bruitées

Calcul de la loi de RUL

Division du calcul en deux parties si le processus $X=(X_t)_{t>0}$ est Markovien :

$$\mathbb{P}(\mathcal{RUL}_t > s | Y_1 = y_1 \cdots Y_n = y_n) = \int_E R_x(s) \mu_{y_1, \dots y_n}(t) (dx).$$

Première partie : fiabilité

La fiabilité du système à l'instant t, avec l'état initial x:

$$R_x(t) = \mathbb{P}_x(X(s) \in \mathcal{U} \quad \forall s \le t)$$

Deuxième partie : loi conditionnelle (filtrage)

La loi conditionnelle de X_t pour $t>t_n$ considérant $Y_1=y_1,\cdots,Y_n=y_n$:

$$\mu_{y_1,\dots,y_n}(t) = \mathcal{L}(X_t|Y_1 = y_1,\dots,Y_n = y_n).$$

L'utilité pour la maintenance

- Politique basée sur la moyenne de la RUL
- Politique basée sur la fonction de répartition de la RUL
- Prise en compte des conditions d'utilisation

Politique de maintenance basée sur la moyenne de la RUL

 \widehat{x}_k état estimé à t_k

Politique I

 au_m seuil de remplacement préventif, à chaque instant d'inspection t_k ,

- si $\widehat{x}_k \in \bar{\mathcal{U}}$, remplacement corrective,
- si $\widehat{x}_k \in \mathcal{U}$ et $\mathbb{E}(\mathcal{RUL}_{t_k}) \leq \tau_m$, remplacement préventive,
- si $\widehat{x}_k \in \mathcal{U}$ et $\mathbb{E}(\mathcal{RUL}_{t_k}) > \tau_m$, report de décision à t_{k+1} .

Politique II

A l'instant d'inspection t_k ,

- si $\widehat{x}_k \in \mathcal{U}$, la durée avant le prochain remplacement préventif est $\mathbb{E}(\mathcal{RUL}_{t_k})$,
- si $\widehat{x}_k \in \overline{\mathcal{U}}$, le système est remplacé correctivement.

Politique basée sur les quantiles de la RUL

Politique I

Soit $P \in [0,1]$, à chaque instant d'inspection t_k ,

- si $\widehat{x}_k \in \overline{\mathcal{U}}$, remplacement corrective,
- si $\widehat{x}_k \in \mathcal{U}$ et $F_{\mathcal{RUL}_{t_k}}(\Delta t) \geq P$, remplacement préventive,
- si $\widehat{x}_k \in \mathcal{U}$ et $F_{\mathcal{RUL}_{t_k}}(\Delta t) < P$, décision reportée à l'instant t_{k+1} .

Politique II

Pour une probabilité fixée a, à l'instant t_k ,

- si $\widehat{x}_k \in \mathcal{U}$, la durée avant le prochain remplacement préventif est $Q_a(t_k)$, quantile de la $\mathrm{RUL}(t_k)$, tel que $\mathbb{P}(\mathrm{RUL}(t_k) \leq Q_a(t_k)) < a$.
- si $\widehat{x}_k \in \overline{\mathcal{U}}$, remplacement corrective.

Les éléments nécessaires

- Indicateur de dégradation ou de santé
- Caractère Markovien de la variable représentant l'état du système (pour appliquer la division de calcul de la loi de RUL)
- Méthode de filtrage si les observations sont bruitées : en-ligne ou hors ligne.

Construction d'indicateur de dégradation : exemple illustratif

Les données PHM 2008

- 218 composants
- 24 capteurs
- 3 conditions opérationnelles
- séries temporelles

Deux ensembles de données

- ensemble d'apprentissage : données jusqu'à la panne
- ensemble test : données jusqu'à un instant avant la panne

Construction de l'indicateur de dégradation

Les étapes

- Sélection des capteurs
- Distinction des modes opérationnels
- Analyse en composantes principales
- Proposition d'un indicateur de dégradation

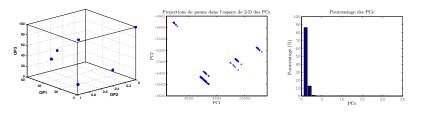
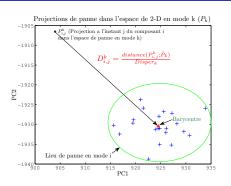
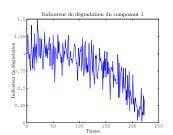
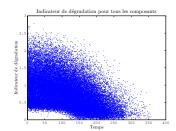


FIGURE: Les 6 modes opérationnels et ACP par mode

Construction de l'indicateur de dégradation







Modélisation de l'indicateur de dégradation

Processus stochastiques

- Dégradation non monotone : processus Wiener avec dérive
- Dégradation monotone bruitée : processus Gamma non-homogène avec bruit gaussien

Avantages

- Comparaison avec d'autres modèles (déterministes ou aléatoires)
- Critère : pronostic, pénalité sur la prédiction tardive de défaillance
- Mise en avant de la modélisation stochastique pour le pronostic

La loi de la RUL

$$\begin{split} F_{\mathcal{R}UL_{t_k}}(h) &=& \mathbb{P}(\mathcal{R}UL_{t_k} < h) = \mathbb{P}(X_{t_k+h} > L|Y_{t_1},...,Y_{t_k}) \\ &=& \int_{\overline{F}_{\alpha((t_k+h)^b-t_k^b),\beta}(L-x)} \underbrace{\mu_{Y_{t_1},...,Y_{t_k}}(t_k)}_{\text{Fonction de survie de Gamma Loi conditionnelle de } dx \end{split}$$

Approximation par MCMC (Gibbs)

$$\widehat{F}_{\mathcal{R}UL_{t_k}}(h) = \frac{1}{Q} \sum_{q=Q_0+1}^{Q_0+Q} \bar{F}_{\alpha((t_k+h)^b-t_k^b),\beta}(L-\widehat{x}_k^{(q)})$$

 Q_0 nombre d'itérations pour atteindre l'état stationnaire et Q le nombre d'itérations supplémentaires pour l'estimation.

- Indicateur de dégradation, état de santé du système
- Quel choix, pour quelle raison?

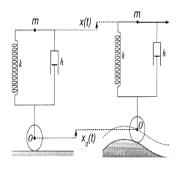


FIGURE: Système d'amortissement de véhicule

X la hauteur de la masse (l'habitacle), \dot{X} sa vitesse. h le coefficient d'amortissement, k la raideur du ressort.

- Le fonctionnement dépend du profil de la route.
- Trois causes de dégradation
 - dégradation due à l'usure
 - dégradation due aux conditions environnementales
 - dégradation due aux conditions d'utilisation
- Deux premières dégradations par chocs, arrivant selon deux processus de poisson $(T_i^u)_{i\in N}$, $(T_i^{ce})_{i\in N}$ d'intensité respective λ^u et λ^{ce} .
- Les chocs modifient le coefficient d'amortissement et la raideur selon une loi uniforme

le comportement du système à un instant t est résumé par :

$$\Xi_t = \left(X(t), \dot{X}(t), H(t), K(t), \lambda^{ce}(t), A(t), \Omega(t) \right)$$

- $\lambda^{ce}(t)$, A(t), $\Omega(t)$: covariables et rendent le processus $\Xi=(\Xi_t)_{t\in\mathbb{R}_+}$ markovien.
- Entre les instants de saut X et \dot{X} évoluent selon l'équation différentielle et les autres composantes restent constant.
- Aux instants de saut H, K, λ^{ce} , A, et Ω sont modifiés.
- Modélisation via un processus de Markov déterministe par morceaux ou PDMP

Nous identifions deux modes de défaillance, à savoir,

- des oscillations trop importantes par unité de temps,
- une position moyenne trop basse.

La zone de défaillance, notée $\bar{\mathcal{U}}$, est l'intersection de ces deux modes.

Soient $0 = t_0 < t_1 < \ldots < t_{n-1} < t_n \le t_{pro}$ une suite d'instants d'observation où nous observons

$$Y_k = g_k(\Xi_{t_k}) + \epsilon_k.$$

où ϵ_k est le bruit de mesure, il est supposé gaussien et indépendant de Ξ_{t_k}

Soit t_{pro} l'instant de pronostic, i.e. l'instant d'inspection où nous voulons estimer la RUL

Pronostic : exemple illustratif

$$\mathbb{P}(\mathsf{RUL}(t_{pro}) > \tau | Y_1 = y_1, \dots, Y_n = y_n) = \int_{\mathbb{R}^7} R_{\xi}(\tau) \mu_{y_1, \dots, y_n}(d\xi),$$

- $R_{\xi}(t) = \mathbb{P}(\Xi_s \in \mathcal{U}, \ \forall s \leq t)$ est la fiabilité à l'instant t avec loi initiale δ_{ξ} , la masse de Dirac au point $\xi \in \mathbb{R}^7$, avec \mathcal{U} la zone de bon fonctionnement
- μ_{y_1,\dots,y_n} la densité conditionnelle de Ξ sachant les observations $Y_1=y_1,\dots,Y_n=y_n$.
- Séparation les évènements passés (influants sur la loi conditionnelle) et les suppositions sur les conditions de missions futures (influants le calcul de fiabilité).
- R_{ξ} peut être calculée par les méthodes de calcul propres aux PDMP (Kalashnikov, Cocozza).
- Calcul de la loi conditionnelle par une méthode récursive avec intégration au fur et à mesure des observations

Pronostic : exemple illustratif

- ullet $P_{t_{p+1}-t_p}$ le noyau de transition de Ξ entre t_p et t_{p+1}
- ν_p , la densité conditionnelle de Ξ sachant les observations $Y_1=y_1,\ldots,Y_{p-1}=y_{p-1}$
- $\tilde{\nu}_p$, la densité conditionnelle de Ξ sachant les observations $Y_1=y_1,\ldots,Y_p=y_p.$

$$\nu_p(d\xi) = \mu_{y_1,\dots,y_{p-1}}(d\xi), \quad \tilde{\nu}_p(d\xi) = \mu_{y_1,\dots,y_p}(d\xi).$$

Notons ϕ_p la densité de la loi de Gauss associée au bruit $\epsilon_p=Y_p-g_p(\Xi_{t_p})$ alors $\tilde{\nu}_p$ se calcule de la manière suivante à partir de ν_p :

$$\tilde{\nu}_p(d\xi) = \frac{\phi_p(y_p - g_p(\xi))\nu_p(d\xi)}{\int_{\mathbb{R}^7} \phi_p(y_p - g_p(v))d\nu_p(d\xi)}$$
$$\nu_{p+1}(d\xi) = \int_E P_{t_{p+1} - t_p}(y, d\xi)\tilde{\nu}_p(dy)$$

Introduisons δ_{ξ} la masse de Dirac associée à $\xi \in \mathbb{R}^7$. L'approximation utilisant N particules est résumée comme suit.

Etape 1. Simulation de N valeurs de Ξ_{t_1} , notées ξ_1^1,\dots,ξ_1^N , afin d'obtenir

$$u_1^N = \frac{1}{N} \sum_{i=1}^N \delta_{\xi_1^j}, \quad \text{mesure empirique, approximation de } \nu_1$$

- Etape 2. Calcul de la constante de normalisation pour avoir $\tilde{\nu}_1^N$.
- Etape 3. Simulation de N valeurs de $\Xi_{t_2-t_1}$ avec la loi initial $\tilde{\nu}_1^N$, afin d'obtenir

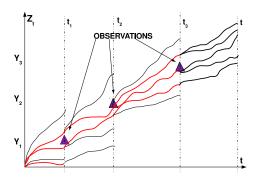
$$u_2^N = \frac{1}{N} \sum_{j=1}^N \delta_{\xi_2^j}, \quad \text{mesure empirique, approximation de }
u_2$$

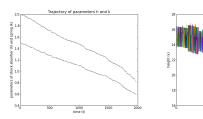
Etape 4. Calcul de la constante de normalisation pour avoir $\tilde{\nu}_2^N$.

Etape 5. Simulation de N valeurs de $\Xi_{t_3-t_2}$, ... $\longrightarrow *$

La densité ν_p est approchée par la mesure empirique $\nu_p^N=\frac{1}{N}\sum_{j=1}^N \delta_{\xi_p^j}.$ Les densités $\hat{\nu}_p$ sont approchées de la manière suivante :

$$\tilde{\nu}_p^N = \sum_{j=1}^N p_j \delta_{\xi_p^j} \text{ où } p_j = \frac{\phi_p(y_p - g_p(\xi_p^j))}{\sum_{l=1}^N \phi_p(y_p - g_p(\xi_p^l))}.$$
 (3)





 $\overline{\mathrm{FIGURE}}$: Une trajectoire de la hauteur de la masse X (droite) et une trajectoire de indicateurs de dégradation H et K (gauche)

Temps de sortie de la zone utile $\mathcal{U}:1965.97$ unités de temps.

Histogramme de la durée de vie résiduelle du système à l'instant initial $t_0=0$ (la fiabilité à t_0) pour différentes conditions de mission possibles.

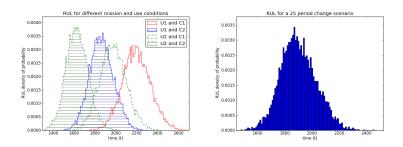


FIGURE: L'histogramme de la RUL pour des condition fixées (droite), pour des conditions variables (gauche)

Pronostic pour la maintenance

Politique II : basée sur la moyenne Politique III : basée sur un quantile Politique III :basée sur l'état estimé

Dégradation selon un processus Gamma avec bruit gaussien

Politique	I	II	III
paramètres optimaux	$(\Delta t, \tau_m) = (4.8, 5.7)$	$(\Delta t, P) = (4.8, 0.18)$	$(\Delta t, A) = (2.4, 11.4)$
C_{∞}	6.0085	6.0083	6.3706

 $\label{eq:TABLE: Coûts moyens à long terme optimaux, pour } X_t \sim \Gamma(t^{3/2},2), \, C_d = 2.5C_c = 5C_p = 50C_i.$

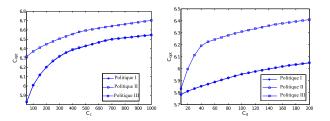


FIGURE: Evaluation du coût moyen optimal

Pronostic pour la maintenance

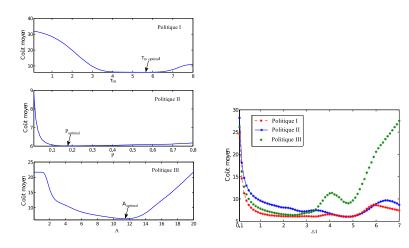


FIGURE: Variation du coût moyen à long terme des trois politiques pour l'intervalle d'inter-inspection optimal (gauche), en fonction de Δt pour les valeurs optimales de τ_m , P et A_1 (droite); \bullet

Merci pour votre attention