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Motivating situation

• Data set: diameter measures of trains wheels

X folow up time: 600,000 Km;

X inspection times: each 50,000 Km (0, 50,000; 100,000;
150,000 ... 600,000);

X 14 locomotives (8× 14 = 112 wheels);



Motivating situation(cont.)

Figure : The location of the wheels: side, axles and trucks within a car
and their corresponding labels.



Motivating situation (cont.)

• Degradation measurementes⇒ 966 mm-[observed diameter at
time (Km) t];

• threshold level (defines the failure (Df ) ⇒ a given wheel is
replaced when its diameter reaches 889 mm ⇒ Df=77 mm;



Motivating situation (cont)

Figure : Wheels degradation profiles by working positions.



Motivating Situation (cont.)

• Questions:

X do the different working positions have significant effect on the
wheels wear?

X if that is the case, what is the time-to-failure distribution of
wheels on different working positions?

X in addition, it is important to get estimates of key reliability
summary figures, such as:

• the MTTF (mean time to failure, or more specifically, mean
distance to failure)

• quantiles of the time-to-failure distribution (e.g. 0.01, 0.10
and the median, 0.50)



Reliability Data - Main sources and Types

I Main sources:

X tests (life tests, accelerated life testes, degradation tests,
accelerated degradation testes, etc.)

X field data (includes warranty returns data)

X handbooks (manuais)



Reliability Data - Main sources and Types (cont.)

I Types of reliability data:

X failure times+ censored failure times

X degradation data : a product characteristic whose degradation
over time can be closely related to failure (examples: loss of
tread on rubber tires and degradation of the active ingredient
of a drug because of chemical reactions with oxygen and water
or microbial)

X records of recurrent events: recurrent failure times + times of
maitenance actions (maintenance data)



Degradation data to access reliability- characteristics,
prerequisites and practical advantages

I Characteristics and prerequisites:

X the existance of a product characteristic whose degradation
over time can be closely related to failure and can be
accurately measured.

EXAMPLES : crack size growth over time; the amount of wear
over time (Km) on train wheels; luminosity of fluorescent
lights or luminous flux, etc.)



Degradation data to access reliability- characteristics,
prerequisites and practical advantages (cont.)

X prespecification of a "threshold" level of degradation → failure
occurs when the amount of degradation for a test unit exceeds
this level. Examples: failure is defined to occur when:

• the crack reaches a length of 2cm
• the diameter measure of the wheels reaches a predefined value

of 889 mm
• a lamp’s luminous flux falls below 60% of its initial luminous

flux, after 100 hours of use.



Degradation data to access reliability- characteristics,
prerequisites and practical advantages (cont.)

I Practical advantages:

I Most failures arise from degradation mechanisms at work for
which there are characteristics that degrade (or grow) over
time (e.g., amount of material displaced by electro migration)

I Degradation data can be analyzed earlier, before a failure
actually occurs

I Degradation data may yield more accurate life estimates than
the accelerated life tests with few or no failures

I Degradation data can provide better information of
degradation processes, which helps one to find the appropriate
mechanistic model for degradation



Literature on degradation data analysis

I Stochastic Process
• Birnbaum and Saunders (1969); Battacharyya and Fries

(1982); Doksum (1991); Whitmore (1995); Doksum and
Normand (1995); Whitmore and Schenkelberg (1997); Padgett
(2004): Wiener process



Literature on degradation data analysis (cont.)

• Bagdonavicius and Nikulin (2000); Lawless and Crowder
(2004):gamma process

• Pan e Balakrishanan (2011): two degradation characteristics -
modeled by Bivariate Birnbaum-Saunders;

• Ng (2008): monotonic degradation profiles with one random
change point.



Literature on degradation data anlysis (cont.)

I General Degradation Path Models

• methods: Nelson (1990) (chapter 11); Carey e Koenig (1991);
Lu and Meeker (1993); Lu et al. (1997); Su et al. (1999);
Almeida (2011)

• applications: Tseng, Hamada and Chiao (1995); Yacout,
Salvatores and Orechwa (1996); Lu et al. (1997); Su et al.
(1999); Wu e Shao (1999); Wu and Tsai (2000); Crk (2000);
Oliveira and Colosimo (2004); Freitas et al. (2009); Peng e
Tseng (2009); Ferreira, Freitas and Colosimo (2011)



Literature on degradation data analysis (cont.)

• basic reference: Meeker and Escobar (1998, cap.13 e 21);

• Bayesian approach: Hamada(2008) - book ; Hamada (2005) -
applied bayesian inference to deal with the random effects of
the general degradation path models - laser data; Freitas et.al.
(2010) - same approach as in Hamada (2005) applied to the
data of train wheels ( wheel at position [000]);



General Degradation Path Models (assumptions and
parameter estimation)

I General form:

Yij = Dij + εij = D(tij ;α;βi ) + εij ,

with i = 1, 2, . . . , n e j = 1, 2, . . . ,mi ,

• Yij is a random variable representing the amount of
degradation of the i th unit at a prespecified time tij
(i = 1, 2, . . . , n; j = 1, 2, . . . ,mi );



General Degradation Path Models (assumptions and
parameter estimation)

• D(tij ;α;βi ) is the theoretical degradation path of unit i at
time tij ( linear or nonlinear form);

• εij is the random error associated to the i th unit at time tij ;

• α = (α1;α2; . . . ;αp)t is a p × 1 vector of fixed effects
describing population characteristics (they are modeled as
common across all units);

• βi = (βi1, βi2, . . . , βik)t is a k × 1 vector or the i th unit
random effects representing the individual unit’s characteristics
(variations in the manufacturing of the components, such as
properties of the raw material and component dimensions).



General Degradation Path Models (assumptions and
parameter estimation)

I Assumptions:

• εij are i.i.d. Normal (0;σ2
ε) (σ2

ε fix and unknown)

• βi = (βi1, βi2, . . . , βik)t i = 1, . . . , n are random vectors i.i.d.
with a multivariate distribution Λ(β|θ) and density function
f (β|θ), indexed by a parameter vector θ (q × 1) fixed and
unknown (which needs to be estimated using the data )

• βi e εij are independent.



General Degradation Path Models (assumptions and
parameter estimation) (cont.)

MAIN CHARACTERISTIC OF THE DATA ANALYSIS

⇓

TWO STAGES

• STAGE 1: model fitting to the degradation data
(lontigudinal data ) - parameter estimation

• STAGE 2 : evaluation of the time to failure distribution
and other key reliability figures (MTTF, quantiles )



General Degradation Path Models (assumptions and
parameter estimation) (cont.)

STAGE 1: Model fitting to the degradation data (lontigudinal
data ) - parameter estimation: Likelihood function

I Model parameters: α, θ and σ2
ε (all fixed and unknown )

f (y |α, θ, σ2
ε) =

n∏
i=1


∫

Ξβi

 mi∏
j=1

1
σε

φNOR(zij)

 f (βi |θ)dβi

 ,

where zij =
[yij−D(tij , α, βi )]

σε
e φNOR is the density of a Standard

Normal distribution function.



General Degradation Path Models (assumptions and
parameter estimation) (cont.)

I REMARK: Usual assumption:

X βi = (βi1, βi2, . . . , βik)t (i = 1, . . . , n ) i.i.d. Nk(µβ , Σβ)

X model parameters: µβ ; Σβ ; α, σ2
ε (fixed and unknown)

X softwares SAS, MATLAB, R (lme, nlme) etc. Model fitting
assuming Normal distribution.



General Degradation Path Models (assumptions and
parameter estimation) (cont.)

STAGE 2: Evaluation of the time to failure distribution F(t)

A specified model for D(t;α, β) and Df defines a failure time
distribution. In general, this distribution can be written as a
function of the degradation model parameters.



General Degradation Path Models (assumptions and
parameter estimation) (cont.)

I Suppose that a unit fails at time t if the degradation level
reaches Df at time t. Then:

• degradation measurements increasing with time

FT (t) = P(T ≤ t) = P[D(t;α;β) ≥ Df ]

• degradation measurements decreasing with time

FT (t) = P(T ≤ t) = P[D(t;α;β) ≤ Df ]



General Degradation Path Models (assumptions and
parameter estimation) (cont.)

I Three procedures that might be used to evaluate FT (t):

X Analytical solution

X Direct integration

X Monte Carlo simulation



General Degradation Path Models (assumptions and
parameter estimation) (cont.)

• Evaluation of F (t) by Monte Carlo simulation:

• Using the parameter estimates α̂, θ̂ and σ̂2
ε generate M

degradation profiles D(t) and compute the “pseudo failure
times” t∗j (j = 1, . . . , M) using y = Df .

• Then, for any desired values of t, use the proportion of paths
crossing Df by time t as an evaluation of F (t). In other words:

F̂T (t) =

M∑
j=1

I(tj∗≤t)

M
t > 0

• Confidence intervals can be obtained using the bias-corrected
bootstrap method.



Train wheel degradation data revisited

1) Empirical search with an approximate degradation analysis
performed with the PSEUDO FAILURE TIMES ( Meeker and
Escobar, 1998
I Approximate analysis

X least squares fit (straight line) to each wheel profile:

yij = Di (tij ;β0i ;β1i ) + εij = β0i +β1i tij +εij (j = 1, . . . , 13)



Train wheel degradation data revisited (cont.)

X Calculation of the pseudo failure times (Meeker and Escobar,
1998) for each wheel profile

t̂i =
Df − β̂0i

β̂1i

X lifetime data analysis using the pseudo failure times (search of
distributions - Weibull, etc.)

X distribution fitting to the pseudo failure times



Train wheel degradation data revisited (cont.)

Figure : Lognormal probability plots based on pseudo failure times, by
working positions



Train wheel degradation data revisited (cont.)

Figure : Point estimates of quantiles (0.50 and 0.90) of the failure time
distributions based on pseudo-failure time data (by working positions).
[higher values indicated by a hachured area ] [axle ×side???]



Train wheel degradation data revisited (cont.)

I Preliminary conclusions based on the empirical search

• The patterns of the degradation profiles (Figure 2) suggest a
linear (straight line) functional form for the degradation path
for all the working positions, with a positive degradation rate
(slope).

• The lognormal distribution is a good candidate for the
distribution of time-to-failure distributions of the wheels.



Train wheel degradation data revisited (cont.)

• As a consequence of 1 and 2, the degradation rate (the slope)
should also have a lognormal distribution

• There is an indication of interactions between the working
condition factors (in particular, side and axle) that might be
affecting the degradation rate and should be included in the
model, possibly by writing the degradation rate as a function
of these factors and interactions.



Train wheel degradation data revisited (cont.)

2) MODEL SPECIFICATION
Nonlinear Mixed Effects Model (NLME) for the i th unit:

Yij = α0 + eηi tj + εij (i = 1, . . . , n; j = 1, . . . ,mi)

ηi = η
(
X t
ij , α , βi

)
= βi + X t

ij α



Train wheel degradation data revisited (cont.)

Where
• n = 110 wheels, mi is the number of measurements per
wheel (i = 1, ..., n) and mi ≤ 13.

• ηi is the log-wear rate of the i th sample unit (wheel); it is
a function of the working positions and individual unit
characteristics.

• βi is the random effect associated with the i th sample
unit; it represents individual unit characteristics.



Train wheel degradation data revisited (cont.)

• Xi j = [Xij1,Xij2,Xij3, (Xij1×Xij2), (Xij1×Xij3), (Xij2×Xij3)]
t

is a 6× 1 vector of covariates associated with Yij .

• Xijl(l = 1, 2, 3) are dummy variables indicating the
working positions side(right=1), truck (back=1) and
axle (inner=1).

• Xijl × Xijl∗(l , l
∗ = 1, 2, 3, l 6= l∗) are dummy variables

indicating the three second-order interactions
(side × truck , side × axle, truck × axle).



Train wheel degradation data revisited (cont.)

• α = (α1, α2, α3, α12, α13, α23)t is a 6× 1 vector of fixed
effects. The first three components, namely α1, α2, α3,
represent the (population) main effects of side, truck and
axle, respectively. The other three are associated with the
second-order interactions side × truck , side × axle and
truck × axle, respectively.

• α0 is the intercept, corresponding to the mean initial
degradation level of the wheel.

• εij is the associated random error for unit i at time
(distance) tj . Note that we use tJ instead of tij since for
the data set under study, tij = tj for all i = (1, ..., n).



Train wheel degradation data revisited (cont.)

Assumptions:

• The random errors εij are i.i.d N(0;σ2
ε); σ

2
ε fixed and

unknown

• βi
iid∼ N

(
µβ, σ

2
β

)
; µβ and σ2

β both fixed and unknown

• the random effects βi are independent of the errors εij .



Train wheel degradation data revisited (cont.)

Advantages of this parameterization:

X the wear rate is always positive as suggested by the
profiles (Figure 2).

X it is possible to obtain the distribution of the time to
failure F(t) analytically:



Train wheel degradation data revisited (cont.)

• η = X tα + β ⇒ η ∼ N
(
X tα + µβ;σ

2
β

)
• eη ∼ logn (X tα + µβ;σβ)

• T ∼ logn (µT ;σT )

where

µT = log(Df − α0)− (X tα + µβ) and σT = σβ



Train wheel degradation data revisited (cont.)

RESULTS

• interaction AXLE × SIDE significant (p < 0, 02)



Train wheel degradation data revisited (cont.)

Table : Interval and Point estimates of the reliability figures by working
conditions - NMLE

Working condition Estimates (×103 Km)
[SIDE,AXLE] MTTF t0.01 t0.05 t0.10

[0,0] 1306.6 196.9 314.6 408.6
[L,OUTER] [979;1.714]∗ [142;281] [233;438] [307;558]

[0,1] 1187 171.2 258.5 365.8
[L,INNER] [893;1519] [132;242] [218;383] [284;489]

[1,0] 1057 157.3 254.6 329.4
[R,OUTER [773;1421,8] [117;223] [192;350] [250;450]
[1,1]= 1573.5 225.1 367.3 477.4

[R,INNER] [1195;1961] [169;330] [279;509] [367;664]
(*)I.C. Bootstrap 90% (rounded values)



Train wheel degradation data revisited (cont.)

Figure : Fitted time-to-failure distributions F (t) by working condition



Conclusions

I By modeling the unit-specific log-rates (ηi , i = 1, ..., n) as
linear functions of covariates (working positions) and
unit-specific normally distributed random effect
(βi ; i = 1, ..., n), it was possible to investigate possible effects
of working conditions (side,axle and truck positions) on the
failure time distribution.

I It was possible to identify working positions where the wheels
are subject to higher levels of stress and whose difference in
wear rate affected the time-to-failure distributions substantially
[side=right; axle=outer].



Conclusions

I In addition, since the unit-specific log-rates are linear functions
of normally distributed random effects, it was possible to use
functions developed for normal random effects, which have
already been implemented in a number of softwares such as
S-Plus, SAS, R and MATLAB. Here, we used the NLME
function available in R.

I Even with the inclusion of the covariates in the log-rate
equation, it was still possible to obtain the failure time
distributions by working positions analytically, which in turn
dramatically reduced the computational effort.


