Modeling Prediction of the Nosocomial Pneumonia with a Multistate model

M.Nguile Makao¹ PHD student Director: J.F. Timsit² Co-Directors: B Liquet³ & J.F. Coeurjolly⁴

¹Team 11 Inserm U823-Joseph Fourier University ²Team 11 Chu-Inserm U823-Joseph Fourier University ³Team Biostatistic Inserm U897-Victor Segalen Bordeaux 2 University ⁴Team SAGAG-Pierre Mendès-FranceUniversity

September 23, 2009

VAP definition and Epidemiology

- Ventilator-Associated nosocomial Pneumonia (VAP): lung infection occurring within 48 hours or more after hospital admission.
- Incidence 8% to 28% Patients receiving mechanical ventilation (MV).

Consequences

- Increases the length of the stay in ICU (5 days).
- Mortality Increasing vs decreasing (controversial literature). Possible reasons:
 - Definition and diagnosis of VAP is problematic.
 - Heterogeneity (observable or unobservable).
- **③** Increasing the cost of expenditures.

Problematic of the VAP

• Using anti-microbial problematic

Figure: Monitoring of a patient in ICU

Figure: Prediction of VAP in ICU

Identification of patients with hight risk to contract VAP.

- **()** November 1996 to April 2009 / 16 French ICUs.
- **2** Data collected daily by senior physicians.
- patients Information at admission and during the stay (Iatrogenic events, Simplified Acute Physiology Score...)

Selection criteria of study population

- Being in ICU at least 48h.
- Receiving MV since the first 48h after admission.
- Stop observation at discharge (48 h after MV) or death.

Study population : 2871, 433(15.1%) VAP, 470(16.4%) Death without VAP and 1968(68.5%) Discharge. Among 433 VAP, 119(27.5%) Death with VAP and 314(72.5%) Discharge with VAP.

Movement of ICU patient

Figure: Multistate of ICU patient

Transition	n (%)	Min.time	Max.time	Median	Mean
$0 \rightarrow 1$	433(15.1)	3	56	7	9.28
$0 \rightarrow 2$	470(16.4)	3	73	6.5	9.98
$0 \rightarrow 3$	1968(68.5)	3	111	6	9.14
$1 \rightarrow 2$	119(27)	1	70	7	13.27
$1 \rightarrow 3$	315(73)	1	135	11	16.19

-

Definition and notation

Basic definitions

- $\{X(t), t \in T = [0, \tau]\}$ a stochastic process on the finite state space $E = \{0, 1, 2, 3\}.$
- $\mathcal{F}_t \sigma$ -algebra integrating all past of process until the time t.
- $\mathcal{E} := \{0 \rightarrow 1, 0 \rightarrow 2, 0 \rightarrow 3, 1 \rightarrow 2, 1 \rightarrow 3\}.$
- Parameter Probability

$$P_{hj}(s,t;\mathcal{F}_{s^{-}}) = \mathbf{Pr}(X(t) = j|X(s) = h;\mathcal{F}_{s^{-}})$$
(1)

③ Transition intensity

$$\alpha_{hj}(t; \mathcal{F}_{t^-}) = \lim_{\Delta t \to 0} \frac{P_{hj}(t, t + \Delta t; \mathcal{F}_{t^-})}{\Delta t}$$
(2)

Different Model

Different model assumptions can be made about the dependence of the transition rate (2) on time. These include:

1 Time homogeneous models:

The intensities are constant over time.

Kay R. Markov model for analysing cancer markers and disease states in survival studies

Biometrics 1986;42:855-65

Markov Models:

The transition intensities only depend on the history of the process through the current state. $\alpha_{hj}(t; \mathcal{F}_{t-}) = \alpha_{hj}(t)$ Cox DR, Miller HD. the theory of

stochastic processes. Chapman & Hall 1965

8 Semi-Markov Model:

Future evolution not only depends on the occurent state h, but also on the entry time T_h in to h.

$$\alpha_{hj}(t; \mathcal{F}_{t^-}) = \alpha_{hj}(t, T_h) = \alpha_{hj}(t - T_h)$$

Andersen PK, Esbjerg S,Sorensen TIA. Multistate models for bleeding episodes and mortality in liver cirrhosis.

Statistics in Medicine 2001;19:587-99

Use of covariates in multistates model

0 General regression model

$$\mathbf{Z}_{hj}(t) = \left(\bar{Z}_{hj}^1, \dots, \bar{Z}_{hj}^{p_{hj}}, \widetilde{Z}_{hj}^1(t), \dots, \widetilde{Z}_{hj}^{q_{hj}}(t)\right)^{\mathsf{T}}$$

set of covariates for the transition $h \rightarrow j$.

$$\alpha_{hj}(t; \mathbf{Z}_{hj}(t)) = \Phi\left(\alpha_{hj_0}(t; \boldsymbol{\mu}_{hj}); \boldsymbol{\beta}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}(t)\right)$$
(3)

2 Cox Model

- $\Phi(u(.); v) = u(.) \exp(v)$
- $\alpha_{hj}(t; \mathbf{Z}_{hj}(t)) = \alpha_{hj_0}(t; \boldsymbol{\mu}_{hj}) \exp(\boldsymbol{\beta}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}(t))$
- Assumption of Cox model The influence of a covariates is constant over time (Proportionality). Continuous covariates are log-linear All individuals have the same base line intensity.

$$\boldsymbol{\beta}_{hj} = \left(\bar{\beta}_{hj}^1, \dots, \bar{\beta}_{hj}^{p_{hj}}, \tilde{\beta}_{hj}^1, \dots, \tilde{\beta}_{hj}^{q_{hj}}\right)^{\mathrm{T}}; \quad \boldsymbol{\mu}_{hj} \ m_{hj} - \text{vector of distribution}$$
parameters

Use of covariates in multistate model

$$\mathbf{Z}_{h}(t) = \{\mathbf{Z}_{hj}(t); j \in E, h \to j \in \mathcal{E}\}\$$

1 Integrated intensity

$$A_{hj}(t; \mathbf{Z}_{hj}(t)) = \int_0^t \exp(\boldsymbol{\beta}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}(u)) \alpha_{hj_0}(u) du.$$

2 Survival function $h \rightarrow j$

$$S_{hj}(t; \mathbf{Z}_{hj}(t)) = \exp(-\int_0^t \exp(\boldsymbol{\beta}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}(u)) \alpha_{hj_0}(u) du).$$

3 Survival function in state h

$$S_h(t; \mathbf{Z}_h(t)) = \prod_{h \to j \in \mathcal{E}} S_{hj}(t; \mathbf{Z}_{hj}(t)).$$

 \mathcal{I}_h set of patient in the state $h.~d_h$ duration , t_h entry time, τ_h release time. $d_h^i = \tau_h^i - t_h^i.~\boldsymbol{\theta}$ parameters vector of model.

- **()** Likelihood of multistate model using the paths $L^{\bullet}(\boldsymbol{\theta})$
- **2** Likelihood of survival model $L_{hj}^{\bullet}(\boldsymbol{\theta}_{hj})$
- Important result

$$L^{\bullet}(\boldsymbol{\theta}) = \prod_{(h \to j) \in \mathcal{E}} L^{\bullet}_{hj}(\boldsymbol{\theta}_{hj}), \quad \bullet = M, SM$$

10 / 29

where $\boldsymbol{\theta}_{hj} = \left(\boldsymbol{\beta}_{hj}^{\mathrm{T}}, \boldsymbol{\mu}_{hj}^{\mathrm{T}}\right)^{\mathrm{T}}$.

() Likelihood of transition $h \rightarrow j$ with $j \in \{1, 2, 3\}$

$$L_{0j}^{\bullet}(\boldsymbol{\theta}_{0j}) = \prod_{i \in \mathcal{I}_0} \left(\alpha_{0j}(d_0^i; \mathbf{Z}_{0j}^i(d_0^i)) \right)^{\Delta N_{0j}(\tau_0^{i^-})} S_{0j}(\tau_0^i; \mathbf{Z}_{0j}^i(\tau_0^i)).$$

Where
$$\Delta N_{0j}(\tau_0^{i-}) = N_{0j}(\tau_0^{i}) - N_{0j}(\tau_0^{i-})$$

 $\tau_0^i = d_0^i, \quad t_0^i = 0.$

$$S_{0j}(\tau_0^i; \mathbf{Z}_{0j}^i(\tau_0^i)) = \exp(-\int_0^{\tau_0^i} \exp(\beta_{0j}^{\mathsf{T}} \mathbf{Z}_{0j}^i(u)) \alpha_{0j_0}(u; \boldsymbol{\mu}_{0j}) du).$$

Parametric estimation $\widehat{A}_{hj}(.; \mathbf{Z}_{hj}(.)) \ h \to j \in \mathcal{E}$

$$L_{1j}^{M}(\boldsymbol{\theta}_{hj}) = \prod_{i \in \mathcal{I}_{h}} \left(\alpha_{1j}(\tau_{1}^{i}; \mathbf{Z}_{1j}^{i}(\tau_{1}^{i})) \right)^{\Delta N_{1j}(\tau_{1}^{i-1})} \frac{S_{1j}(\tau_{1}^{i}; \mathbf{Z}_{1j}^{i}(\tau_{1}^{i}))}{S_{1j}(t_{1}^{i}; \mathbf{Z}_{1j}^{i}(t_{1}^{i}))}$$

Semi-Markov

$$L_{1j}^{SM}(\boldsymbol{\theta}_{hj}) = \prod_{i \in \mathcal{I}_h} \left(\alpha_{1j}(d_1^i; \mathbf{Z}_{1j}^i(d_1^i)) \right)^{\Delta N_{1j}(d_1^{i^-})} S_{1j}(d_1^i; \mathbf{Z}_{1j}^i(d_1^i))$$

2 Practical Notes

 $t_h^i \leq s_0 \leq \dots, s_{k_i} \leq \tau_h^i$ the time when covariates value change for the ith patient. Integrals used in previous equation are equal to:

$$\int_{t_h^i}^{\tau_h^i} \exp(\boldsymbol{\beta}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}^i(u)) dA_{hj}(u) = \sum_{l=0}^{k_i-1} \exp(\boldsymbol{\beta}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}^i(s_l)) \Delta A_{hj}(s_l).$$
(4)

Parametric estimation $\widehat{A}_{hj}(.; \mathbf{Z}_{hj}(.)) \ h \to j \in \mathcal{E}$

 $\textbf{0} \quad \text{Optimization of } L(\boldsymbol{\theta}_{hj}) \Rightarrow \widehat{\boldsymbol{\theta}}_{hj} \text{ (Method Quasi-Newton)}$

2 Asymptotic results $\sqrt{n}(\hat{\theta}_{hj} - \theta_{hj})$ converges to a zero-mean normal distribution with a covariance matrix that is estimated by $\frac{1}{n}\mathbf{F}(\hat{\theta}_{hj})^{-1}$. Variance of the parameters

$$\mathbf{var}(\widehat{\theta}_{hj}) = diag(\frac{1}{n}\mathbf{F}(\widehat{\theta}_{hj})^{-1}) \tag{5}$$

Under the hypothesis $\hat{\theta}_{hj} = \boldsymbol{\theta}_{hj}$ the Wald statistic defined by:

$$(\widehat{\theta}_{hj} - \boldsymbol{\theta}_{hj})^{\mathrm{T}} \mathbf{F}(\widehat{\theta}_{hj}) (\widehat{\theta}_{hj} - \boldsymbol{\theta}_{hj})$$

is approximately distributed as the chi-square distribution with $p_{hj} + q_{hj} + m_{hj}$ degrees freedom.

Non-parametric estimation $\widehat{A}_{hj}(.; \mathbf{Z}_{hj}(.)) \ h \to j \in \mathcal{E}$

$$N_{hj}(t) = \sum_{i \in \mathcal{I}_h} N_{hj}^i(t), Y_h(t) = \sum_{i \in \mathcal{I}_h} Y_h^i(t)$$
 counting process.

Markov

$$\rightarrow j \text{ with } j \in \{2,3\} N_{1j}^i(t) = \mathbf{1}_{\left\{t_1^i \le \tau_1^i \le t\right\}} Y_1^i(t) = \mathbf{1}_{\left\{t_1^i \le t \le \tau_1^i\right\}}.$$

$$PL(\boldsymbol{\beta}_{hj}) = \prod_{i \in \mathcal{I}_h} \prod_{\tau_h^i \ge 0} \left\{ \frac{\exp(\boldsymbol{\beta}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}^i(\tau_h^i))}{\sum_{l \in \mathcal{I}_h} Y_h^l(\tau_h^i) \exp(\boldsymbol{\beta}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}^l(\tau_h^i))} \right\}^{\Delta N_{hj}^i(\tau_h^i)}, \qquad (6)$$

2 Semi-Markov

$$n \to j \text{ with } j \in \{2,3\} \ N_{hj}^i(t) = \mathbf{1}_{\left\{d_h^i \le t\right\}} \ Y_h^i(t) = \mathbf{1}_{\left\{d_h^i \ge t\right\}}.$$

$$PL(\boldsymbol{\beta}_{hj}) = \prod_{i \in \mathcal{I}_h} \prod_{d_h^i \ge 0} \left\{ \frac{\exp(\boldsymbol{\beta}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}^i(d_h^i))}{\sum_{l \in \mathcal{I}_h} Y_h^l(d_h^i) \exp(\boldsymbol{\beta}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}^l(d_h^i))} \right\}^{\Delta N_{hj}^i(d_h^i)}, \quad (7)$$

Non-parametric estimation $\widehat{A}_{hj}(.; \mathbf{Z}_{hj}(.)) \ h \to j \in \mathcal{E}$

1 Optimization of
$$PL(\boldsymbol{\beta}_{hj}) \Rightarrow \widehat{\boldsymbol{\beta}}_{hj}$$

2 Breslow estimator

$$\widehat{A}_{hj_0}(t) = \sum_{i \in \mathcal{I}_h} \int_0^t \frac{dN_{hj}^i(u)}{\sum\limits_{l \in \mathcal{I}_h} Y_h^l(u) \exp(\widehat{\boldsymbol{\beta}}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}^l(u))}.$$

3 Estimator of integrated intensity

$$\widehat{A}_{hj}(t; \mathbf{Z}_{hj}(t)) = \sum_{s_{hj}^i \le t} \exp(\widehat{\boldsymbol{\beta}}_{hj}^{^{\mathrm{T}}} \mathbf{Z}_{hj}(s_{hj}^i)) \Delta \widehat{A}_{hj_0}(s_{hj}^i)$$

4 Asymptotic results $\sqrt{n}(\widehat{A}_{hj_0}(t) - A_{hj_0}(t))$ converges to a zero-mean Gaussian process and the covariance function can be estimated (see Andersen et al. 1992)

Non-parametric estimation $\widehat{\alpha}_{hj}(.; \mathbf{Z}_{hj}(.)) \ h \to j \in \mathcal{E}$

0 Estimator of transition intensity

$$\widehat{\alpha}_{hj}(t; \mathbf{Z}_{hj}(t)) = \frac{\Delta \widehat{A}_{hj}(t; \mathbf{Z}_{hj}(t))}{\Delta t}$$

2 Smoothing estimator of transition intensity

$$\widehat{\widetilde{\alpha}}_{hj}(t; \mathbf{Z}_{hj}(t)) = \sum_{s_{hj}^i \le t} \frac{1}{b} \exp(\widehat{\boldsymbol{\beta}}_{hj}^{\mathsf{T}} \mathbf{Z}_{hj}(s_{hj}^i)) K\left(\frac{s_{hj}^i - t}{b}\right) \Delta \widehat{A}_{hj_0}(s_{hj}^i).$$

16 / 29

Gaussian $K(t) = \frac{1}{\sqrt{2\pi}} \exp(\frac{-1}{2}t^2)$. $\Delta U(t) = U(t) - U(t^-)$. b: bandwidth

Analyze of database

Selection Covariates

- **step 1**: Test the log-linearity of continuous covariates (Using Poisson regression)
- **step 2**: Test the Proportionality of covariates (the time dependent coefficients and Schoenfeld residuals)

Non-parametric Model (Cox)

- Use stepwise selection with Cox model where the entry threshold is equal to 0.25 and the stay threshold is equal to 0.05.
- The model of each transition is validated by the C index defined by $C^{t} = \int_{0}^{t} AUC(u)w^{t}(u)du$

(신문) (신문)

17 / 29

 $AUC(t) = \int_0^t ROC_t^{I/D}(p) dp, \ ROC_t^{I/D}(p)$ is the true-positive rate, $w^t(u)$ are weigths

Application 1: OUTCOMEREA database

Result 1: estimation of the covariates effects

Transition	covariates	β	HR	SE	P-value
0->1	sirs	1.14	4.37	0.26	2.2e-8
	ablsp	0.24	1.28	0.09	0.012
	lod>6	0.14	1.16	0.10	0.155
	Mal gender	0.36	1.44	0.10	0.000
	pnc	0.33	1.39	0.11	0.003
	Ards	0.43	1.55	0.19	0.022
0->2	ablsp	-0.07	0.92	0.09	0.44
	lod>6	3.18	24.1	0.17	2.e-16
	dar	2.00	7.4	0.09	2.e-16
	age>74	0.15	1.17	0.10	0.117
	Immun	0.15	1.16	0.12	0.235
0->3	ablsp	-0.47	0.62	0.04	2e-16
	lod3a4	-0.70	0.49	0.05	2e-16
	Lod5a6	-0.95	0.38	0.06	2e-16
	Lod>6	-2.15	0.11	0.10	2e-16
	Age>74	-0.10	0.89	0.05	0.04
	Typemed	-0.21	0.81	0.04	4.1e-6
	Chro.ill	-0.17	0.84	0.04	0.000
1->2 SM	t°C	-0.32	0.72	0.21	0.12
	Lod>6	2.84	17.2	0.27	2e-16
	Dnr	2.10	8.2	0.19	2e-16
	Chr.ill	0.26	1.2	0.18	0.16
1->2 M	T°C	-0.11	0.88	0.21	0.57
	Lod>6	2.88	17.91	0.28	2e-16
	Dnr	2.04	7.70	0.19	2e-16
	Chr.ill	0.24	1.27	0.19	0.20

M.Nguile Makao (Team 11 Inserm U

Multistate/prediction VAP

September 23, 2009

Application 1: OUTCOMEREA database

$\bigcirc \underline{C \text{ index}}$

Transition	01	02	03	12M	13M	12SM	13SM
C index	0677	0.924	0741	0.888	0.713	0.891	0.702

Selection of model distribution

Transition	Wbg	Wb	Lnorm	Llog	BrS	InG	Gamma	Exp
0->1	4087.97	4295.92	4206.02	4255.18	4167.92	4169.7	4286.21	4357.35
0->2	3055.79	3330.45	3272.13	3326.89	3326.65	3551.28	3329.58	4165.59
0->3	13477.74	13083.17	12227.40	12024.66	14012.82	13627.03	12819.29	13231.61
1->2 (SM)	938.61	877.64	869.02	876.90	918.20	1058.65	879.45	876.60
1->3 (SM)	2749.50	2534.24	2526.74	2524.52	2557.56	2605.60	2530.33	2541.63
1->2 (M)	875.84	877.45	933.08		902.64	954.66	879.02	876.66
1->3 (M)	2670.71	2495.27	2543.03			2595.88	2542.54	2541.63

Values AIC for each distribution

Estimation $\alpha_{hj_0}(.)$ Markov/semi-Markov

Transition Intensity 12 SM

M.Nguile Makao (Team 11 Inserm U

Multistate/prediction VAP

September 23, 2009

< E

30

3

Application 1: Description of profile

 Subject 1: VAP after 10 days (mal gender=1, pnc=1, ards=0)

 sirs
 1
 1
 1
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t

	Subject 2 : Died without VAP after 16 days (mal gender=1, pnc=0, ards=0)																														
sirs	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ablsp	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lod>6	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Days	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16														30) 31

Subject 3: Discharge without VAP after 12 days (mal gender=1, pnc=0, ards=0)

sirs	1	1	1	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ablsp	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lod>6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Days	1	2	3	4	5	6	7	8	9	10	11	12						••••												.30	31

M.Nguile Makao (Team 11 Inserm U

크 > 크

Estimator $\widehat{\alpha}_{01}(., \mathbf{Z}_{hj}(.))$ by profile

Multistate/prediction VAP

September 23, 2009

3

Definition of individualized prediction

Figure: Prediction of VAP in ICU

 $\mathcal{H}_{hj}(s,t) = \{\mathbf{Z}_{hj}(x); x \in [s,t]\} \text{ the covariates history over the interval } [s,t] \text{ associated to the transition } h \to j. \ \mathcal{H}_h(s,t) = \{\mathbf{Z}_h(x); x \in [s,t]\} \text{ the covariate history for all transitions from the state } h \text{ and } \mathcal{H}_h^i(s,t) = \{\mathbf{Z}_h^i(x); x \in [s,t]\}.$

Definition of individualized prediction

The prediction of the VAP for the ith individual over time interval [t+k,t+k+l] for all l,k>0

$$\varphi^{i}(t,k,l;\mathcal{H}_{0}^{i}(x(k),x(k+l))) = \int_{x(k)}^{x(k+l)} P_{00}(x(k),u;\mathcal{H}_{0}^{i}(x(k),u))$$
$$\times dA_{01_{0}}(u) \exp(\beta_{01}^{T}\mathbf{Z}_{01}^{i}(u)).$$

$$\varphi^i(t,k,l; \mathcal{H}_0^i(x(k),x(k+l))) = -\frac{1}{S_0(x(k); \mathbf{Z}_0^i(x(k)))}$$

$$\times \int_{x(k)}^{x(k+l)} S_0(u; \mathbf{Z}_0^i(u)) \exp(\boldsymbol{\beta}_{01}^{\mathsf{T}} \mathbf{Z}_{01}^i(u)) dA_{01_0}(u)$$

With x(v) = t + vM.Nguile Makao (Team 11 Inserm UMultistate/prediction VAPSeptember 23, 200924 / 29

Estimation of the profile

Oproblematic: missing values in the prediction interval

Figure: history of covariate of time-dependent

2 hypothetical solution

The prediction of the VAP for ith individual over time interval [t+k, t+k+l] for all l, k > 0 we pose $\mathbf{Z}_{hj}^{i}(t) = \mathbf{Z}_{hj,t}^{i}$ and we define the profile of ith patient by

$$\mathbf{Z}_{hj,t}^i(x) = \mathbf{Z}_{hj}^i(x)\mathbf{1}_{[0,t]} + \mathbf{Z}_{hj,t}^i\mathbf{1}_{]t,+\infty[},$$

Estimation of prediction

Parametric estimator of prediction

$$\widehat{\varphi}^{i}(t,k,l;\mathbf{Z}_{h,t}^{i}(x)) = \frac{\exp(\widehat{\beta}_{01}^{\mathsf{T}}\mathbf{Z}_{01,t}^{i})}{\widehat{S}_{0}(t+k;\mathbf{Z}_{0,t}^{i}(t+k))} \int_{t+k}^{t+k+l} \widehat{S}_{0j}(u;\mathbf{Z}_{0,t}^{i})\widehat{\alpha}_{01_{0}}(u)du.$$

Non-parametric estimator of prediction

$$\widehat{\varphi}^{i}(t,k,l;\mathbf{Z}_{h,t}^{i}(x)) = \frac{\exp(\widehat{\beta}_{01}^{\mathsf{T}}\mathbf{Z}_{01,t}^{i})}{\widehat{S}_{0}(t+k;\mathbf{Z}_{0,t}^{i}(t+k))} \sum_{\substack{t+k \leq s_{i} \\ t+k+l \geq s_{i}}} \widehat{S}_{0}(s_{i};\mathbf{Z}_{0,t}^{i}) \Delta \widehat{A}_{01_{0}}(s_{i}).$$

Smoothed estimator of prediction

$$\widehat{\varphi}^{i}(t,k,l;\mathbf{Z}_{h,t}^{i}(x)) = \frac{1}{\widehat{S}_{0}(t+k;\mathbf{Z}_{0,t}^{i}(t+k))} \sum_{\substack{t+k \leq s_{i} \\ t+k+l \geq s_{i}}} \widehat{\widetilde{S}}_{0}(u;\mathbf{Z}_{0,t}^{i}) \widehat{\widetilde{\alpha}}_{hj}(s_{i};\mathbf{Z}_{0j,t}^{i}) \Delta s_{i}.$$

Application:2 OUTCOMEREA database

Base prediction

M.Nguile Makao (Team 11 Inserm U

September 23, 2009

ъ

-

Application 2 OUTCOMEREA database

Individualyzed prediction

Parametric prediction VAP 3Days

0.6 Profile 1 Profile 2 Profile 3 ♦(t, z(t), 0, 3) 70 0.2 00 20 25 30 0 5 10 15 x

Nonparametric prediction VAP 3Davs

Smooth prediction VAP 3Days

M.Nguile Makao (Team 11 Inserm U

Multistate/prediction VAP

September 23, 2009

Э

-

- Assumptions of the Cox model
- e Heterogeneity
- Model validation

Thank you your attention !!!!!

크 > 크