Risk Univ. Grenoble Alpes

Physics-Informed Deterioration Modeling and Maintenance Optimization Using Stochastic Petri Nets: Application to Torrent Protection Structures

Presented by **Nour CHAHROUR** 25 October 2021

Supervised by: Prof. Christophe BÉRENGUER Dr. Jean-Marc TACNET

Jury members: Prof. John ANDREWS Prof. DAVID BIGAUD Prof. François PÉRÈS Prof. Johannes HÜBL Prof. Didier GEORGES Dr. Aurélie TALON

> MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

Égalité

Fraternitë

ECOLE DOCTORALE EEATS

BACKGROUND

Torrential Phenomena

Reception

Flow

Flood in Malnant torrent (FRANCE)

Characteristics Magnitude Intensity Frequency Effect

Torrential watershed

 Debris flow © P.Zufferey

4

acting causes Structures С 0 acting consequences tructures

6

Manival torrent (FRANCE)

Interdependent protection system

torrent (France,

Reception

Flow

Downstream

BACKGROUND

Series of

check dams

Pontamafrey

Retention dam

Claret torrent (France)

Dykes/Levees

Saint Bernart torrent (France)

Interventions

Inspection

Monitor, diagnose,...

When? How often?

Maintenance

Preventive (repair), corrective (re-construct), ...

When? What? How much?

Is it worth it to maintain these structures in comparison to the provided level of protection?

Downstream risk level

Maintenance efficiency

Residual risk?

11

RESEARCH NOVELTY

 Dynamic and long term efficacy assessment

SOTA in the context of torrent protection structures

□ Static assessment of protection structures efficacy

Use of basic or static reliability techniques (e.g. FMEA, FTA, and ETA)

Maintenance decisions based on static vision
Use of classical decision-making techniques (e.g. CBA, MCDM)

(Carladous, 2017)

RESEARCH NOVELTY

 Dynamic and long term efficacy assessment using stochastic Petri nets (SPNs)

SOTA in the context of system's reliability analysis

Transition laws between states are estimated by the: Use of exponential distribution for simplicity (constant failure rate) Use of real data in order to fit a suitable probability distribution

□ Applications in civil engineering context:

Bridges: Weibull *(Le and Andrews, 2016) (Le et al., 2017)* Railway network: Gamma *(Shang, 2015),* Weibull *(Litherland, 2019*)

RESEARCH NOVELTY

Civil engineering

Coping with **interactions** between **failure modes**

How can **local scouring** trigger failure by **external stability**?

Multi-component protection system

Coping with complex interacting systems/structures

How does the **failure** of **one component** affects the **behavior** of **other components**?

Protection system's maintenance decision-making

Coping with **information imperfection** How does **information imperfection** affects decisions?

- Cascade effect analysis
- Integrating information imperfection in decision models

Information imperfection propagation

3

Analyzing the

the developed modeling

approach

Propagating uncertainty within the deterioration and maintenance model and performing a sensitivity analysis

Developing a stochastic deterioration and maintenance model using SPNs in order to support maintenance decisionmaking of protection structures considering economic aspects

CONTRIBUTIONS

Proposing a **physics-based** model that models the timedependent state-evolution of protection structures when being subjected to torrential phenomena considering cascade effect

General approach

(can be applied to any deteriorating system)

- Data acquirement
- Hazard scenarios
- Consequences

model

- Dynamic behavior of the system
- Cascade effect
- Transition laws

Decision-aiding

model

- Stochastic deterioration & maintenance modeling
- Maintenance optimization (cost-effective)

Risk Scenario Definition Check dams subjected to clear water floods

STAGE 3 Cascade effect analysis between the torrent's **bed** behavior, **scouring** variation, and check dam's **stability** level evolution

STAGE 2 Generation of clear water flood events scenarios

STAGE 1 Data collection

Risk Scenario Definition STAGE 2

Scenario n

Randomness Pdf Average peak discharge $Q(m^3/s)$ Pdf Date of occurrence D (years)

Physics-based Model Considering cascade effects

STAGE 2

Check dam's **states** definition **Transition probability laws** estimation

STAGE 1

Bed evolution Scouring calculation External stability justification Global stability index definition

Check dam (central body wall)

Fixed point (at the level of the

dam's weir crest)

Physics-based Model STAGE 1

At t = 0

Initial bed level

Weir's crest

Longitudinal

profile

Scenario i

Physics-based Model

STAGE 1

Global stability indicator definition

 $S_{g} = (S_{BC}^{\alpha} * S_{OT}^{\beta} * S_{SL}^{\gamma})^{1/(\alpha+\beta+\lambda)}$

External stability justification

(Deymier et al., 1995) (Groupe de travail, 1993)

Exceedance of bearing capacity Stability against overturning Stability against sliding **S**_{BC} **S**_{OT} **S**_{SL} after scouring $S_{BC} = \frac{\sigma_{adm} - q'_r ef}{\sigma_{adm} - q'_r ef}$ $M_S - M_O$ $S_{OT} =$ $S_{SL} =$

Δ

Stochastic Deterioration & Maintenance Model Stochastic Petri Net (SPN) Model

STAGE 3

Apply Monte-Carlo simulation Compare maintenance strategies

STAGE 2

Define different maintenance strategies

STAGE 1

Construct the SPN model

Stochastic Deterioration and Maintenance Model

Stochastic Deterioration and Maintenance Model **STAGE 2**

Maintenance strategy 1:

All maintenance operations are allowed

Maintenance strategy 2: Minor operations are inhibited

Maintenance strategy 3: Major operations are inhibited

Condition for the case of check dams: Three minor operations and two major operations are allowed prior to corrective maintenance operation

Maintenance strategy 4:

Only corrective operations are allowed

Stochastic Deterioration and Maintenance Model

PERFORMANCE ANALYSIS

Analysis of protection structures' performance (using the proposed modeling approach)

Performance analysis of protection structures

- Deterioration
- Maintenance

- Uncertainty propagation
- Sensitivity analysis

Analysis of bi-directional dependencies

- Multi-component system
- Components' interactions

CASE STUDIES

Development and Evaluation of a Complete Deterioration and Maintenance Model on Torrent Protection Structures

Case study 1 Single check dam

Case study 2

Multi-components system of check dams

Case study 3 Retention system

Check Dam Subjected to Clear Water Floods in the

Manival Torrent (Chahrour et al. RESS 2021)

1 Risk scenario definition

Data collection (ONF – RTM database)

- Longitudinal & transverse profiles
- Grain size distribution
- Geotechnical data
- Check dams' dimensions

Flood scenarios

- Random generation of 50 scenarios
- Clear water flood events
- Floods with return period of 10 years
- Time period considered: 100 years

Manival torrent (FRANCE)

Performance Analysis using the Physics-based model

(Chahrour et al. RESS 2021)

Variation in bed level along the entire studied reach.

CASE STUDY 1

Performance Analysis using the Physics-based model

(Chahrour et al. RESS 2021)

Time-dependent evolution of degradation indicators(e.g. scenario 1) Check dam #54

Performance Analysis using the Physics-based model

(Chahrour et al. RESS 2021)

Time-based evolution of the global stability indicator Sg

Check dam #54

Sg corresponding to the 50 generated scenarios

Performance Analysis using the Physics-based model

(Chahrour et al. RESS 2021)

Fitting probability distributions for stochastic transitions

Performance Analysis using the Stochastic Deterioration & Maintenance Model

(Chahrour et al. RESS 2021)

Mean sojourn time spent by the dam in each state

Check dam #54

	State 1	State 2	State 3	State 4
Strategy 1	86.01	10.49	2.55	0.87
Strategy 2	56.62	37.27	4.20	1.77
Strategy 3	73.04	6.73	19.02	1.21
Strategy 4	44.43	25.89	27.45	2.23

(Results provided by the SPN model)

Time spent by the dam in each state - strategy 1.

Performance Analysis using the Stochastic Deterioration & Maintenance Model

(Chahrour et al. RESS 2021)

Average number of maintenance operations applied to the dam over a period of 100 years Check dam #54

	Minor operations	Major operations	Corrective operations
Strategy 1	3.85	1.13	1.04
Strategy 2	0	1.57	2.04
Strategy 3	3.49	0	1.48
Strategy 4	0	0	2.62

(Results provided by the SPN model)

Average expected cost of each maintenance strategy.

Uncertainty Analysis using HYRISK

Hybrid approach addressing uncertainty in risk context (Rohmer et al., 2018) (Baudrit et al., 2007)

1 Uncertainty representation

Define **inputs** and **outputs**

Assign **distributions** for inputs

Uncertainty Analysis using HYRISK

Hybrid approach addressing uncertainty in risk context (Rohmer et al., 2018) (Baudrit et al., 2007)

2 Uncertainty Propagation

Case 1 – Uncertain **inputs** are **all** represented as **probability** distributions

Case 2 – At least one uncertain input is represented as a possibility distribution

Uncertainty Analysis using HYRISK

Hybrid approach addressing uncertainty in risk context (Rohmer et al., 2018) (Baudrit et al., 2007)

Case 1 – Uncertain **inputs** are **all** represented as **probability** distributions

Case 2 – At least one uncertain input is represented as a possibility distribution

Uncertainty analysis applied to check dam model

(Chahrour et al. ESREL 2021)

Sub-models of the physics-based model

Uncertainty analysis applied to check dam model

(Chahrour et al. ESREL 2021)

Sub-models of the stochastic deterioration & maintenance model

Uncertainty analysis applied to check dam model

(Chahrour et al. ESREL 2021)

Scouring estimation sub-model

Uncertainty analysis applied to check dam model

(Chahrour et al. ESREL 2021)

3 Sensitivity analysis

Fixed values

 $D_{90} = 0.09 \text{ m}$ $Z_{Fi} = 0.3 \text{ m}$ $\theta = 3 \text{ m/m}$

Epistemic	uncertainty	(%)
-----------	-------------	-----

Output	Uncertainty propagation	Pinched input parameter		
	propuguion	D_{90}	Z_{Fi}	θ
S_d	11.60	10.84 6.55%	3.67 68.36%	7.93 31.63%
S_W	17.60	14.56 17.27%	3.36 80.90%	17.60 <i>0%</i>

S_d and S_w are more sensitive to the epistemic parameter Z_{Fi}

Performance & Dependency Analysis using the Physicsbased model

(Chahrour et al. RAMS 2021)

D₁ fails first

Global stability index evolution over time

Absence of D₂ (lower stability)
 Presence of D₂ (higher stability)

Cumulative distribution function of stochastic transitions T_{1-2} , T_{2-3} , and T_{3-4}

Absence of D_2 Presence of D_2 1.00 1.00 0.75 0.75 B 0.50 0.50 0.25 0.25 0.00 0.00 10 20 30 50 0 10 20 30 40 50 40 t (years) t (years) T2 - 3

Transitions with few number of observation (N): T₁₋₃ and T₂₋₄

~ Exponential distribution ($\lambda = 1/N$)

Performance & Dependency Analysis using the Stochastic Deterioration & Maintenance Model (Chahrour et al. RAMS 2021) Absence of D₂

SPN model applied only to D₁

Mean sojourn time (years) of D₁ in each state over a period of 50 years

		State 2	State 5	State 4
Strategy 1	44.65	4.95	0.27	0.04
Strategy 2	26.02	23.00	0.63	0.15
Strategy 3	41.20	4.13	4.42	0.13
Strategy 4	20.82	19.37	9.18	0.39

Presence of D₂

	State 1	State 2	State 3	State 4
Strategy 1	44.06	5.59	0.26	0.02
Strategy 2	24.03	24.44	1.35	0.06
Strategy 3	40.11	4.72	4.96	0.11
Strategy 4	18.43	18.69	12.45	0.26

Almost same	
results	

Performance & Dependency Analysis using the Physicsbased model

(Chahrour et al. RAMS 2021)

SPN model applied only to D₁

Average expected number of maintenance operations over a period of 50 years

Absence of D ₂		Minor operations	Major operations	Corrective operations
	Strategy 1	2.37	0.45	0.09
	Strategy 2	0	0.96	0.34
	Strategy 3	2.31	0	0.27
	Strategy 4	0	0	0.72

Presence of D_2		Minor operations	Major operations	Corrective operations
	Strategy 1	2.51	0.36	0.05
	Strategy 2	0	1.10	0.12
	Strategy 3	2.37	0	0.21
	Strategy 4	0	0	0.52

Total cost of each maintenance strategy

Strategy 3 is the most cost-effective

CONCLUSION

Achieved Contributions

Objectives:

- Analyze different behavioral scenarios of protection structures subjected to deterioration mechanisms and maintenance operations
- > Make **cost-effective** maintenance decisions.

Achievements:

- > Integrated modeling approach:
 - Physics-based model (dynamic state evolution, transition times)
 - Reliability-based stochastic model (stochastic deterioration and maintenance modeling)
- > Performance analysis of protection structures (case studies on check dams and retention dam)

General Discussion

From a **research point of view** :

- A multidisciplinary approach that combines several fields in order to support decision-making based on raw data and expert knowledge.
- A new decision-support approach (dynamic over their lifetime, dependencies) to support their maintenance decision-making
- Coupling multi-scale hydraulic analysis (from global bed evolution to check dams' local scouring analysis) and civil engineering approaches (stability analysis).
- Coupling physics-based (hydraulic and mechanical) models with reliabilitybased models (SPNs, CBM) in order to justify transition laws involved in the stochastic degradation process.

CONCLUSION

General Conclusions on Achieved Contributions

From an operational point of view :

Realistic and informative approach that supports risk managers and decision-makers to make optimal management decisions.

- Feedback on real life behavior of the protection structures concerning real maintenance strategies
- Totally generic approach: applicable to any civil engineering structure exposed to any undesirable phenomena.

PERSPECTIVES

Limitations and Future Work

For physics-based model:

- Developing the global state indicator by considering aging aspects and more types of failures.
- Carrying out more research and technical analysis in order to better choose the degradation states' thresholds.

For the stochastic deterioration and maintenance model:

> Considering partial renewal maintenance actions instead of perfect ones.

For bi-directional dependency analysis in a Multi-component system:

- > Applying the model to a real case study where **real data** is available.
- > Considering **more components** in the system.

PERSPECTIVES

Limitations and Future Work

For uncertainty analysis:

- Propagating uncertainty using HYRISK within the whole model in order to be aware of how it may eventually affect the maintenance decision.
- Re-estimating transition laws taking into account (i) climate change and (ii) topographical changes.

Other developments:

- Analyzing the efficiency of adopted maintenance strategies on the maintained structure itself.
- Assessing the economic efficacy by estimating the risk imposed on downstream elements.
- Taking into account the monetary evolution over time instead of constant maintenance costs.

nour.chahrour@inrae.fr