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Torrential watershed
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Natural Risk Assessment
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Interdependent
protection
system

BACKGROUND
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BACKGROUND

Longitudinal profile

Top view
Fixed
points

Centered
flow

Torrent check dams
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Scientific and Technical Challenges




Check dams’ failures modes

SCIENTIFIC & TECHNICAL Efficacy

assessment iE I v

CHALLENGES

Are these structures functionally Loss in internal and Fail to fulfill
and/or structurally effective? external stability expected functions
cracks, corrosion, ... scouring

Structural efficacy level: Functional efficacy level:
Global, external, and internal stability? Longitudinal and transverse profiles control?
Aging and material characteristics? Sediment retention?

Liquid input (rain, | &5
snow melting) ¢

" 1 Solid input from banks, slopes
(scouring, landslides) moved by
bedload transport or debris flows

%

= - L
S > s H " 7 fes
TR Y S A P < .

L e Photo: J.-M. Tacnet (Irstea/ETNA) . : :

"

Economic efficacy level: : .

Construction, maintenance costs in relation with the level of . e
» : . .

protection provided to elements at risk? .4.0 ’

Yew

(Source J.-M. Tacnet)



SCIENTIFIC & TECHNICAL Multi-component protection system

’/\ clear water
flood
_ Source of danger

CHALLENGES

How to figure out and model

.. . Landsllde e 9
existing dependencies? %%
Intensification of %
primary consequence{

. Overload Loss in stability
c Interactions between
ﬁ Loss in stability
hazards iti

DependenCIeS between Regressive erosion from
fa | I ures m Od es upstream to downstream

I Primary phenomenon Primary consequences — Cascade effect

(triggering, increasing
[ secondary phenomenon I Sccondary consequences

probability, catalyzing)
- Tertiary consequences 10

Cascading effect due to:

Bi-directional dependencies
between structures




SCIENTIFIC & TECHNICAL

CHALLENGES

Budgetary l@
constraints . ~g .
H/ Cost-Benefit

) ) ) nalysi
Which maintenance strategy is analysis
the most cost-effective?

Interventions

Is it worth it to maintain these
structures in comparison to the

- Insptj:-ctlon. provided level of protection?
Monitor, diagnose,...
When? How often? Downstream risk level

.~ .4 OMaintenance Maintenance efficiency

- Preventive (repair), corrective (re-construct), ... Residual risk? %%
< .

Al When? What? How much?
- 1



SCIENTIFIC & TECHNICAL

CHALLENGES K//

How to asses the effect of
information imperfection
on decisions?

Uncertainty
analysis

Expert assessment m

Subjective

i n i Objective

Quantitative

Assumptions

Collected data

T 4

Numerical models

A

o

Qualitative “ A

v

Uncertainty

¥ ]

Inconsistency

Random or Epistemic

Conflict

Imprecision

Vague

v

Incompleteness

Insufficiency
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Research Novelty & Contributions
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SOTA in the context of torrent protection structures

RESEARCH NOVELTY (J Static assessment of protection structures efficacy
Use of basic or static reliability techniques (e.g. FMEA, FTA, and ETA)

v Dynamic and long term (J Maintenance decisions based on static vision

efficacy assessment Use of classical decision-making techniques (e.g. CBA, MCDM)

(Carladous, 2017)
State 2
oor
State 1 (poor) State 3 _ S
\ _— (failed) Tlme-de:pendent
(good) evolution of a
T Maintenance protection
structure

operation 2

Maintenance RVEHL{HEL: Maintenance

strategy operation 1 v' Condition-based operation 3

maintenance
14



SOTA in the context of system’s reliability analysis

RESEARCH NOVELTY [ Transition laws between states are estimated by the:

Use of exponential distribution for simplicity (constant failure rate)
Use of real data in order to fit a suitable probability distribution

 Applications in civil engineering context:

v Dynamic and long term

efficacy _assessme.nt Uusing Bridges: Weibull (Le and Andrews, 2016) ( Le et al., 2017)
stochastic Petri nets Railway network: Gamma (Shang, 2015), Weibull (Litherland, 2019)

(SPNs)

v" Physics-based modeling

Time-dependent
evolution of a
protection
structure

(failed)

Maintenance

operation 2 Maintenance

Maintenance RUELNLEL ]
strategy operation 1 v' Condition-based operation 3

maintenance
15



Civil engineering

RESEARCH NOVELTY U Coping with interactions between failure modes
How can local scouring trigger failure by external stability?

Multi-component protection system s‘,
[ Coping with complex interacting systems/structures v‘j"\ﬁ
How does the failure of one component affects the - -
behavior of other components? _:“»—"‘1"

Protection system’s maintenance decision-making

[ Coping with information imperfection
How does information imperfection affects decisions?

v' Cascade effect analysis

v Integrating information imperfection
in decision models

16



CONTRIBUTIONS

Proposing a physics-based
model that models the time-
dependent state-evolution
of protection structures
when being subjected to
torrential phenomena
considering cascade effect

& - -
State 1 State 2 State 3

Information imperfection propagation

Deterioration
model

Acquired

Maintenance

data model

Propagating uncertainty
within the deterioration and
maintenance model and
performing a sensitivity
analysis

Developing a stochastic
deterioration and
maintenance model using
SPNs in order to support
maintenance decision-
making of protection
structures considering

economic aspects

Analyzing the
performance/behavior of
two types of protection
structures (check dams
and retention dams) using
the developed modeling

approach

State n

17



Developed Modeling Approach
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MODELING APPROACH

Risk scenario
definition

= Data acquirement
" Hazard scenarios
= Consequences

General approach
(can be applied to any deteriorating system)

Physics-based
model
= Dynamic behavior of
the system
= Cascade effect
" Transition laws

= Stochastic deterioration &

Decision-aiding
model

maintenance modeling
Maintenance optimization
(cost-effective)

19



Risk Scenario Definition
MODELING APPROACH Check dams subjected to clear water floods

STAGE 3
Cascade effect analysis between the
torrent’s bed behavior, scouring
variation, and check dam’s stability
level evolution

STAGE 2
Generation of clear water

flood events scenarios

STAGE 1
Data collection

20



Risk Scenario Definition

MODELING APPROACH I~ v.Ye] 3]

Longitudinal profile
d;

Trapezoidal h I

cross-section
di+1

Erodible layer:
D, L5 | Grain size distribution
D30, Dso, Dy, €tc...

Substratum A
Lot ! '

Hror
c'

Geometry,
dimensions of dams

I
e |
A’

A - __F.l_

Transverse profile

N A

B
Channel width

Section AA’

BSUP BTAL

)

7 ] I | Geotechnical
| Hwelr l
| data
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Risk Scenario Definition
MODELING APPROACH IESTNel W,

= Randomness
. . . y - -
Generation of n flood series scenarios , Pdf
N Qs oo Scenario 1 R A Average peak
Qa peak ) discharge
eoE C)5peak -
E
c 3
Q (m’/s)
Event 1 Event2 Event3 Event4 Event 5 Time (h)
A Scenario 2 Pdf
Q’Zpeak A
R Date of
«ﬁ occurrence
o

, >
Event1 Event2 Event3 Event4 Time (h) ™
<|<|‘I‘ D (years)
------------------ Scenario n >




MODELING APPROACH

Before scouring

After scouring

Scour pit

Risk Scenario Definition
STAGE 3

Stress distribution

—

Redistribution of stresses

EE—

External stability
conditions are
fulfilled

'/\

-
\ A\
\

\
\

(

“
7~

Loss in external

stability: risk of

collapse (e.g. by

~ overturning, soil
rupture, etc.)

7~
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Physics-based Model
Considering cascade effects

MODELING APPROACH

STAGE 2
Check dam’s states definition

Transition probability laws
estimation

STAGE 1
Bed evolution
Scouring calculation
External stability justification
Global stability index definition

24



Physics-based Model
MODELING APPROACH SN ]

Scenario i

Time-dependent bed evolution

w
modeling via LOGICHAR (Laigle, 2018) E
¢
1:1 peak 1:1 end t2 end 1:n peak 1:n end Time (h)
Longltu.dlnal Att=0
profile A

Weir's
crest

=

I Check dam (central body wall)

e Fixed point (at the level of the /

dam’s weir crest) Initial bed level ® Time (h)

Bed level (m)

Event 1 Event 2 "~ Eventn

25



Physics-based Model

MODELING APPROACH STAGE 1

Front view

Global and local scouring estimation

Combination of Sogreah (1989) and Comiti et al.
(2013) methods

- \ {
Side view "'51 4
77777777777777777777777 AN - ! !_____-
| |
—>
H Sw = Isogreah
w

Bed after eventi

N

— *
I:)Sogreah - IDComiti R

- - N __ 7

I I:,comiti

Bottom view

I,

AN
/7

Z
N\

Sw

— — E 3 ’
Sw - ISogreah - IDSogreah R

Sd = Zaf = f(PSogreah ’ ZF’ hsl X et)

J

|
|
|
|
i
1
|
|
|
4

I:)Comiti = ZZ(HS/Z)O'S9 * (b/B)2'34 * (ADQO/Z)-O'O9 + hs

I—sogreah
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MODELING APPROACH STAGE 1

External stability justification

Exceedance of bearing capacity

Sgc

after scouring

—>
Tadm _(I;ef
SBCY — Tadm

(Deymier et al., 1995) (Groupe de travail, 1993)

Physics-based Model

n Global stability indicator definition

S, = (Spc™ * Sorf * Sg ¥ )1/ (BN

Stability against overturning  Stability against sliding

(‘ Sot «— Sa

/
\
N\ N A
N\ \
MU L L
\/
Me—M Rsr,—R
Sor = 5:;\[;0 SsL = S}%SLH
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Physics-based Model
MODELING APPROACH IFSUNCID)

E Time-dependent evolution of S,

Sg
n Check dam’s states definition
1 State 1
State 1 State 2 State 3 State 4 Se1
New — good Poor Very poor Failed
condition condition condition condition Sg2
? State 3
Transition 0 T 1 .
- 5 «——<«—><«—— State4  Time (years)
Ti-4 T : T T3 Ta
ransmon
2 T2 . l - Transition laws estimation
Transition Transmon Transition Ti.o
_ »-» ~m- ) I
Tio2 L. T3.4
()
? 8 T1 -3
Transition E -4
—_— -4
1 >
Ti.3 Time (years)

28



Stochastic Deterioration & Maintenance Model
MODELING I Stochastic Petri Net (SPN) Model

STAGE 3
Apply Monte-Carlo simulation

Compare maintenance strategies

STAGE 2
Define different
maintenance strategies

STAGE 1
Construct the SPN model

29



Stochastic Deterioration and Maintenance Model
MODELING APPROACH IS NI E] T.,

State-evolution of a deteriorating system
subjected to maintenance policy

Toy

(GRIF, 2018)

T T, T34
P1 1-2 PZ 2-3 P3 P4
State 1 ' State 2 ' State 3 Stafce 4
(good) (poor) (very poor) (failed)

Tg

Degradation process Ts

Stochastic transitions
laws are learnt from
physics-based model

P;

Maintenance process

T11 v

Minor operation Tq

Major operation

Corrective operation

30



Stochastic Deterioration and Maintenance Model
MODELING APPROACH IFSUNCID)

Maintenance strategy 1:
All maintenance operations are allowed

Maintenance strategy 2:

\/;' Minor operations are inhibited
‘ Maintenance strategy 3:

Major operations are inhibited

Condition for the case of check dams:
Three minor operations and two major
operations are allowed prior to corrective
maintenance operation

Maintenance strategy 4:
Only corrective operations are allowed

31



Stochastic Deterioration and Maintenance Model
MODELING APPROACH SN T.,

Degradation process

(GRIF, 2018)

Maintenance process

T3-4

Ps

P,

State 3 State 4'
(failed)

5 (very poor)
4 T, P T,

/7
@
T10 \— T11

Corrective operation

y

Ts

Major operation

32



Performance Analysis & Case Studies
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Analysis of protection structures’ performance

PERFORUEN (using the proposed modeling approach)

ANALYSIS

Performance analysis of Uncertainty Analysis of bi-directional
protection structures analysis dependencies
= Deterioration = Uncertainty propagation = Multi-component system
= Maintenance = Sensitivity analysis = Components’ interactions

34



Development and Evaluation of a Complete
Deterioration and Maintenance Model on
Torrent Protection Structures

Case study 1
Single check dam

Case study 2
Multi-components
system of check dams Case study 3

Retention system

LRI, -
g




Check Dam Subjected to Clear Water Floods in the

Manival Torrent
(Chahrour et al. RESS 2021)

n Risk scenario definition

> Data collection (ONF — RTM database) Sediment
. . . retention basin ——9 Reach under
- Longitudinal & transverse profiles | ‘7 study
- Grain size distribution 3 P
- Geotechnical data

- Check dams’ dimensions

» Flood scenarios
- Random generation of 50 scenarios
- Clear water flood events
- Floods with return period of 10 years
- Time period considered: 100 years

Manival torrent (FRANCE)

36



Risk scenario definition
(Chahrour et al. RESS 2021)

Pdf

Average peak A Date of
discharge occurrence

T =10 years
~ Poisson law (A = 1/10)

Q (m®/s) \<|<|~I_ D (years)
s

Pdf

Qayg (T = 10 years) = 5 m3/s
~Gamma law (a=5,(3=1)

8
7

6

Hydrograph showing a @5
series of flood events — E4
scenario 1. o ;

4

0

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
t(h) 37



150
125;
100

Bed level Y (m)
g ~N
S o

N
°©

LOGICHAR simulations (e.g. scenario 1)
Reach down stream retention dam (39 check dams)

300 400 500 600 700
Cumulative distance X (m)

Variation in bed level along the entire studied reach.

— t=1h
— t=2h
t=3h
t=4h
t=5h
— t=6h
— t=7h
— t=8h

135

130"

125

120

Performance Analysis using the Physics-based model
(Chahrour et al. RESS 2021)

Check
dam #54

840 850 860 870 880

Variation in bed level
upstream and
downstream check dam
#54.

38



Performance Analysis using the Physics-based model
(Chahrour et al. RESS 2021)

Time-dependent evolution of degradation indicators(e.g. scenario 1)

Check dam #54
Scouring indicators Stability indicators
A A
| \ | ]
S4 Sw Sec Sor S
0.8 51 1.00; 1.00] —L 1.00
0.6 4 0.75 0.75 0.75
= =3
& S O = el
=04 = 5 0.50] S 0.50 2 0.50
% & 2
0.2 1) 0.25 0.25 0.25
o0{~ | o0&~ ] o000  J o000 "= o000
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
t (years) t (years) t (years) t (years) t (years)
Local scouring Local scouring Bearing capacity Overturning Sliding

depth width stability ratio stability ratio stability ratio 39



Performance Analysis using the Physics-based model
(Chahrour et al. RESS 2021)

Time-based evolution of the global stability indicator Sg

Check dam #54
Sg corresponding to the 50 generated scenarios
Sg corresponding to scenario 1 SO s B e B s i S e
1.00
0.75
| L B -]
0.75 [t e
o 0.50+ - -1 e A -fH----- :[ ----------
o 0.50 - ) |

gl

0 10 20 30 40 50 60 70 80 90 100
t (years)

0.25;

0.00f

0.00+ -
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Performance Analysis using the Physics-based model
(Chahrour et al. RESS 2021)

Fitting probability distributions for stochastic transitions

Check dam #54
1.00-
T12 (41 values) — Empirical CDF 0.751
T23 (20 values) :
- using Kaplan

l-DLOS
(.)'0

T24 (20 values)

Meier Estimator
T34 (23 values) _

0.251

0.00;

T13 (6 values) } Log normal

T14 (3 values) distribution (u, o) 0 20 40 60 80 100

t (years)

—_— T12 = T23 - T24 — T34



Performance Analysis using the Stochastic Deterioration

& Maintenance Model
(Chahrour et al. RESS 2021)

Mean sojourn time spent by the dam in each state
Check dam #54

. g : Time spent by the dam in each

30 —=state 4
20

0 50 100 150 200 250

(Results provided by the SPN model)

W 86.01 10.49 _
< 100
W 56.62 37.27 4.20 1.77 Ll
o 80
.g 70
W 73.04 6.73 19.02 1.21 S
c 60 —=state 1
S 50 = State 2
W 44.43 25.89 27.45 2.23 5 . B
o
Q
2
E
g

Number of Simulations

42



Performance Analysis using the Stochastic Deterioration

& Maintenance Model
(Chahrour et al. RESS 2021)

Average number of maintenance operations

. . Average expected cost of
applied to the dam over a period of 100 years each maintenance
Check dam #54 strategy.

Minor Major Corrective oo
operations operations operations 400

3.85 1.13 1.04
0 1.57 2.04 ‘
3.49 0 1.48 |
0 0 2.62 100/
0*

(Results provided by the SPN model)

Cost (k€)
W
o
o

N
o
o

stratégy 1 stratégy 2 stratégy 3 stratégy 4
B minor I major I corrective

43



Uncertainty Analysis using HYRISK

Hybrid approach addressing uncertainty in risk context
(Rohmer et al., 2018) (Baudrit et al., 2007)

n Uncertainty representation

X = (X, X5, X3)

X1
Define inputs and Inputs X, - X Output

outputs X3

Fixed Possibility Probability

Assign distributions A A Certainty A
for inputs A r
| P ¥ 100 % -
X4 X, X5

44



Uncertainty Analysis using HYRISK

Hybrid approach addressing uncertainty in risk context
(Rohmer et al., 2018) (Baudrit et al., 2007)

E Uncertainty Propagation

Case 1 - Uncertain inputs are all Case 2 — At least one uncertain input is
represented as probability distributions represented as a possibility distribution
CDF i Lower Decision
CDF | Decision A ‘bound |  |threshold
A ithreshold /’\ """"" *pmx
p' i___ I
- 75% Koo
L X _ quantile[ Xk \ \'\T
quantile I N R
| Upper
; bound
| | tomeemeenend
i | Jreeeee
| = I >
: - Epistemic
X uncertainty X

45



Uncertainty Analysis using HYRISK

Hybrid approach addressing uncertainty in risk context
(Rohmer et al., 2018) (Baudrit et al., 2007)

B Sensitivity analysis

Case 1 - Uncertain inputs are all Case 2 — At least one uncertain input is
represented as probability distributions represented as a possibility distribution
Pinching X, Pinching X; Pinching X; (i = {2, 3})
CDF | CDF | CDF |
A P A ' A Idmbpm
X/ o | \ N
| _ AP .
7|X’ ' me_ Reduction in
/ | epistemic
/| uncertainty
X
Before pinching (X; is uncertain)

— — — After pinching (X; is fixed)
46



Uncertainty analysis applied to check dam model
(Chahrour et al. ESREL 2021)

Sub-models of the physics-based model

l; = flood events and Hydraulic model O1 = flow characteristics
torrent’s characteristics and bed evolution
;= 0, + soil Scouring model O, = local scouring
characteristics dimensions
| = Input O = Output
l; = O, + check dam’s Stability justification _ o
dimensions + soil model O, = stability indicators
characteristics
=20 Global stability (Sg) 0, = time-dependent
e evolution of Sg
t Transition times 47



Uncertainty analysis applied to check dam model
(Chahrour et al. ESREL 2021)

Sub-models of the stochastic deterioration & maintenance model

|s = empirical CDFs of
transition times involved in
the degradation process +
periodic transition time at
which inspection takes place
+ required maintenance
scheduling time

Stochastic O = number of

deterioration and maintenance
T E R e [ — operations carried

(using stochastic out over a specified

| = Input petri nets) period of time O = Output

O = total cost of
each maintenance
strategy

lg = Os + cost of each Maintenance decision
maintenance operation model

l Maintenance optimization A8



Uncertainty analysis applied to check dam model
(Chahrour et al. ESREL 2021)

Scouring estimation sub-model

Front view
I b Variable inputs
Side view Hs[’ — ——
sH : Sd — f(HS“ hS‘ﬂ B DQO‘) ZF'i-a dza Aa H'w«. b 0)
Hw w
Initial bed. | Ns......- T :_.—..\T)dzIZFi S'w — f(Hq, h.s, Bl, Dgc ZFI (121 A’ Hw«, b)

/1
/ A
?d% Fixed inputs

Bottom view

Transverse profile Input  Hs  hs B d: A Hy b
(m) (m) (m) (m) (m) (m)
S
\ / J g Value 0737 0229 6 0873 1.65 23 44
¢ > Sw
B
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n
00 02 04 06 08 10

n Uncertainty representation

| I ! 1
0080 0085 0090 0095

possi

00 02 04 08 08 10

possi

r T T T 1
01 02 03 04 05

possi

CDF
06 08

0.4

0.2

1

1

1

n

1

D90

00 02 04 06 08 10

1

0.0

Epistemic
uncertainty =
11.6%

T T T T

270 2.80 2.90 3.00

e

0z 04 06 08 10

0.0

Uncertainty analysis applied to check dam model
(Chahrour et al. ESREL 2021)

E Uncertainty propagation

Epistemic
uncertainty =
17.6%

50



Uncertainty analysis applied to check dam model
(Chahrour et al. ESREL 2021)

B Sensitivity analysis Fixed values | py;=0.09m Z;=0.3m 0=3m/m

Pinching Dgo Pinching Z; Pinching 6 Epistemic uncertainty (%)

°| ° ° / Output Uncertalpty Pinched input parameter
TR =5 S propagation
S . «. | Dy Zpi 0
3 S S S, 11.60 10.84  3.67 7.93
St y S — 31 . . 6.55% 68.36% 31.63%
0. 030 035 0. 025 030 035 040 . 0. 30 0. 35 A
S Sq(m
4 (m) ] ¢ (m) ) G 17.60 1456  3.36 17.60
= — 7 = ] - 17.27% 80.90% 0%
w3 =5 g1
O 3 3 Sy and S, are more sensitive to
S S S the epistemic parameter Z,

465 475 | 485 405 = 465 | 475 | 485 495 465 475 abs

Sw(m) Sw (M) Sw(m) 51



Multi-component system:
Bi-directional dependencies
(Chahrour et al. RAMS 2021)

Three cases to be modeled Single dam

over a period of 50 years

20m 40 m
Dy
Longitudinal profile H
20m | d=40m | 20m Two d?ms_ o,
[ i i ] (not considering /H
| | | | -
i | D P failure)
i !Dz ?\( If D4 fails at time t — at t:
| T Erodible layer Two dams D, a5°
— (considering
. i . ailure
u&flS Trape20|d'al cross ) If D, fails at time t — at t:
section D,
B=6m

52



based model

D, fails first

Global stability index evolution over time

Absence of D, (lower stability)
Presence of D, (higher stability)

Scenario i Scenario j
1.001 1.001
055 D75
v 0.50 v 0.501
0225 D25
D o —— s 000t ===--": ———
0 10 20 30 40 50 0 10 20 30 40 50
t (years) t (years)

(Chahrour et al. RAMS 2021)

Performance & Dependency Analysis using the Physics-

Cumulative distribution function of
stochastic transitions T, ,, T, 5, and T3 4

Absence of D, Presence of D,
1.00 1.00
0.751 0.757
T8 TN
8 0.50 8 0.50
0.25 0.25
0.001 0.001
0 10 20 30 40 50 0 10 20 30 40 50

t (years) t (years)

13-4 T1-2 T2-3 13-4

T-2 T2-3

Transitions with few number of
observation (N): T,;and T, ,

~ Exponential distribution (A = 1/N)
53



SPN model applied only to D,

gyl

gy3

Performance & Dependency Analysis using the

Stochastic Deterioration & Maintenance Model

(Chahrour et al. RAMS 2021)
Absence of D,

Mean sojourn time (years) of D, in m 44.65 4.95 0.27 0.04
each state over a period of 50 years m 26.02 23.00 0.63 0-15
“Strategy3  41.20 4.13 4.42 0.13
“Strategy4 2082 19.37 9.18 0.39
Presence of D,
s | e (gl e
44.06 5.59 0.26 0.02 Almost same
24.03 24.44 1.35 0.06 results
40.11 4.72 4.96 0.11
18.43 18.69 12.45 0.26

i
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Performance & Dependency Analysis using the Physics-

based model
(Chahrour et al. RAMS 2021)

Total cost of each maintenance strategy

SPN model applied only to D, Absence of D Presence of D
p) 2

Average expected number of maintenance

120 120

operations over a period of 50 years
Absence of D, Minor Major Corrective
operations operations operations I I I

©
o
[~
o

Cost (k€)
(<2
o

Cost (k€)
[+2]
o

2.37 0.45 0.09 40 40
0 0.96 0.34 20 20
2.31 0 0.27 0 0
strategy 1 strategy 2 strategy 3  strategy 4 strategy 1 strategy 2  strategy 3  strategy 4
0 0 0.72 I minor I major IS minor NN major
Presence of D, Minor Major Corrective
operations operations operations St rate 3 'S the most
I
2.51 0.36 0.05 gy
0 o e cost-effective
2.37 0 0.21
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Conclusions and Perspectives
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Achieved Contributions

Objectives:

» Analyze different behavioral scenarios of protection structures subjected to
deterioration mechanisms and maintenance operations

a
A

> Make cost-effective maintenance decisions.

Achievements:

QN

» Integrated modeling approach:
= Physics-based model (dynamic state evolution, transition times)
= Reliability-based stochastic model (stochastic deterioration and maintenance modeling )

» Performance analysis of protection structures (case studies on check dams and retention dam)
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General Discussion

From a research point of view :

» A multidisciplinary approach that combines several fields in order to support
decision-making based on raw data and expert knowledge.

» A new decision-support approach (dynamic over their lifetime,
dependencies) to support their maintenance decision-making

» Coupling multi-scale hydraulic analysis (from global bed evolution to check
dams’ local scouring analysis) and civil engineering approaches (stability
analysis).

» Coupling physics-based (hydraulic and mechanical) models with reliability-
based models (SPNs, CBM) in order to justify transition laws involved in the
stochastic degradation process.
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General Conclusions on Achieved Contributions

From an operational point of view :

» Realistic and informative approach that supports risk managers and
decision-makers to make optimal management decisions.

» Feedback on real life behavior of the protection structures concerning real
maintenance strategies

» Totally generic approach: applicable to any civil engineering structure
exposed to any undesirable phenomena.
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Limitations and Future Work WHAT’S
NEXTZ

For physics-based model: "4

> Developing the global state indicator by considering aging aspects and more
types of failures.

» Carrying out more research and technical analysis in order to better choose
the degradation states’ thresholds.

For the stochastic deterioration and maintenance model:
» Considering partial renewal maintenance actions instead of perfect ones.
For bi-directional dependency analysis in a Multi-component system:
» Applying the model to a real case study where real data is available.

» Considering more components in the system.
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Limitations and Future Work WHAT’S

NEXTY

‘ ‘
For uncertainty analysis: ‘)4

» Propagating uncertainty using HYRISK within the whole model in order to be
aware of how it may eventually affect the maintenance decision.

» Re-estimating transition laws taking into account (i) climate change and (ii)
topographical changes.

Other developments:

» Analyzing the efficiency of adopted maintenance strategies on the maintained
structure itself.

» Assessing the economic efficacy by estimating the risk imposed on
downstream elements.

» Taking into account the monetary evolution over time instead of constant
maintenance costs.
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