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Research background Reliability analysis

Reliability i1s defined as (ISO):

B The ability of an item to perform a required function,
under given environmental and operating conditions and

for a stated period of time.

Failure: the item loses this ability.

Reliability data analysis:

® Lifetime data;

® degradation measurement.
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Research background Degradation analysis

New challenges:

» High-reliability and long-life products
» Temporal variability and unit-to-unit variability

» Dynamic decision-making in maintenance

L

Reliability analysis based on

degradation data: 1 _threshold level

R(t):P{X(T)féﬂ,‘v’OSTSt} ¥

T= mf {t N (t) ¥ Q} 0 Lifetime T g
Working timﬁ

degradation




Research background The inverse Gaussian process

® Statistically independent degradation increments;

® Y, (t) — Yy (s) follows an IG distribution IG(BAA(t), nAA%(t)).

v’ better fitting results for the GaAs laser degradation.
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Research background Problems for the IG process

O Symmetric and normal random effects

Xo(£) — Xo(s)~ IG(BAA(),nAA% (), B~ ~N(u, 0?)

i Distribution L AIC
— — Weibull
-—- Skew-normal t (U e

— Half-normal
Normal -89.8168 183.63

1200
I

1000
1

800
1

Gamma -90.3049 184.61

Density
600
1

Sejplelgniell s -90.6636  185.33

j“\ Weibull -89.1474 182.29
— -87.4892 178.98

400
|

200
1




Research background Problems for the IG process

O Constant variance-to-mean ratio (VMR)

For the additivity of the IG distributions I1G (BAA(t), nAA%(t)).

E[X(t)] = pA(t)

N GIEN A ¢

Var[X(t)] = IO A(t) 0.1-5
2 0.1

VMRIX()] = Var[X(0] _B* o

E[X(t)] n




n . Degradation modelling
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(@ SN random effects @ time varying VMR




Degradation modelling Skew-normal random effects

Degradation model {X,(t),t > 0} :

® Statistically independent degradation increments;

® Degradation level X, (t) follows |G distribution:

TR 2mA@®) | ’n/lz(t) Y
Fy,(x) =& " (BA(t)_l) +exp{ 3 }(D (BA(t) )

® § = 1 follows skew-normal distribution SN (u, o2, @):

=2 (1) (221
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Degradation modelling Skew-normal random effects

Reliability assessment:

R(t) =P{X(r) ¢ 2,v0 <t <t},T =inf{t: X(t) € 0}

Considering |G process is monotonous, its reliability can
be simplified by:
Fr,(t) = P{Xo(t) > D} =1—Fx (D)

If we consider SN random effects, lifetime CDF will be:

Fr, () = f Fr, (105 (w) du

= E4 qb( 2( +\/ﬁ5) + Es eW(ﬂ%(— nA%() \/—5)




Degradation modelling Skew-normal random effects

Reliability assessment:
For V~SN(u,o%,a), the computations of E,[®(A + BV)]
and Ey, [e“V (4 + BV)]:

(1) I(ay, az, by, by) = [ ®(ay + bix)®(ay + byx)(x) dx;

(2) Based on Dominated Convergence Theorem,
compute the second order partial derivative of I1(aq, a,, b1, b,)
with respect to a4, a,;

(3) Integrate it over a4, a,;

(4) With some changes of variables, obtain the resuilts.



Degradation modelling Skew-normal random effects

Parameter estimation:

Test data: x,, = x(t,m) denotes the mt" degradation
measurement of sample 1n; A%, = Xnm — Xpm—1-

Log-Likelihood function: L(x) = XN_; ¥M_ Infyx(4xpm)

where
fax(x) = fax,(x|6 = B~ = wfs(w) du
| e {—l [x282 — 24A(0)x5 + AAZ(t)]}
-0 \ 21X 3 P 2x

Maximize L(x) and obtain the MLEs of © = {6,,1n,u, 0, a}.



Degradation modelling Time varying VMR

a perturbed IG process model {Y(t),t > 0} :

Yk - Xk + €k
where Y, = Y(t,), X, = X(t,), &, = &(t,) are respectively the measured

degradation, actual degradation and measurement error (ME) at ¢;.

® Statistically independent ME: g,~N(0, o2):
ElY(®)] = BA(®)

ﬁS
Var[Y (t)] = TA(t) + g2

ﬁz UE

BA(t)

VMR[Y(t)] =




Degradation modelling

Time varying VMR

a perturbed IG process model {Y(t),t > 0} :

Yksz_I_gk

® Statistically dependent ME: g, ~N(0, a2, (xx)):

1 Z
fEklxk (lek) — mo_gk (xk) exp \_ zo_gk (xk)]

® Reliability assessment:

Fr(t) = P{X(t) < D}

=

- nA?(t)( D 1 -
D (ﬁA(t)_ )

+ exp{

2nA(t)
B

fo|-
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Degradation modelling Time varying VMR

VMR for the perturbed IG process model:

2 e nlx—BAtI?

3 — k
VMR(Y;,) = % + il f oz (x)x 2e 2B%x  dx
0‘

V2np
(1) On condition of X, Y} follows a normal distribution:
fraxe V1xk) = fex V — xiclxi)
(2) Conditional expectation and variance:
E[Yi| Xk = xx] = xg, Var (Y| Xy = x5) = 0, (xg)
(3) Unconditional expectation and variance:

E(Yy) = Ex|Ey (Yi|xi)] = pA(ty)

Var(Yy) = Ex[Var(Yi|x,)] + Vary|E(Yi|xy)]



Degradation modelling Time varying VMR

VMR for the perturbed IG process model:

Assume a flexible power function: g, (xy) = ax®,a,b > 0.

Depending on different values of a,b, the VMR of the

proposed model can display various kinds of trends:

18

16+ — :VMRs obtained by Monte-Carlo simulation

14

\ + :VMRs calculated according to the derived Eq. (8) ‘

-----

VMR
=

(a=0.4,b=1.4)
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e (@25b= 02) |




Degradation modelling Time varying VMR

Parameter estimation:

The introduction of ME makes that the measured
degradation increments are no longer independent.
Based on the concept of conditional probability, the

likelihood function can be expressed as:

n
L(}/; @) - nfyi,l (yi,l) fYLz[YLl(yi,z |yi,1) in]mi|Yi]m_1(yi,milyi,mi—l)
i=1

where y;, =v(t;x) is the measured degradation

performance, and fy, v, (Viklyik-1) is the PDF of y;

conditioned on y; j_1.



Degradation modelling Time varying VMR

Parameter estimation:

The conditional PDF fy,, v, ,(¥iklVik-1) can be

computed in the following step-by-step way.

--

lek X e 1(3/;k 1|V)fxlk 1 v)

(1) Froortvipms W1Vik-1) =

Foo
f in,k—1|Xi,k—1(yi'k_llu)fxi,k—1(u)du

+00
(2) in,klyi,k—l (lei,k—l) . fO in,lei,k—l (le) in,k—llyi,k—-l (vlyi,k—l)dv

(3) in,kIYi,k—l(yLk|yi,k—1)= f0+ooni,k|Xi,k(yi,k|W) in,k|Yi,k_1(W|yi,k—1)dW
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(D simulation study @ two case studies




Numerical experiments Simulation study

Performance of the parameter estimation methods:

® Power drift function: A(t) = t?

® 1000 repetitions to calculate bias and standard deviations

» The MLEs can accurately estimate the model parameters

» The estimation accuracy increases with sample size

0.0747 -0.0201 0.0261 0.0143 0.0035
(0.1441) (0.0343) (0.2459) (0.2655) (0.0174)
0.0713 -0.0149 0.0205 0.0119 0.0032
(0.1435) (0.0271) (0.2430) (0.2620) (0.0161)

0.0460 -0.0128 0.0235 0.0078 0.0015 ¥
(0.1397) (0.0264) (0.2553) (0.2517) (0.0162)




Numerical experiments Simulation study

Lifetime estimation accuracy with mis-specification:

(O Simulate degradation data under the proposed model

(2 Estimate and compare three candidate models

® the true model can be selected with the lowest MSE

Candidate Model m

1

——True IG_SNRE
— Estimated IG_SNRE
| ——Estimated I[G_NRE
—Estimated IG_FE

e
o

S
o

1.91E-3

probability

<
T

3.62E-3

<
o
T

5.68E-04

o

12 14 16 18 20 22 24
time



Numerical experiments GaAs laser degradation

GaAs laser device degradation experiment:

® Sample size: 15
® [nspection interval: 250 hours.

® Failure threshold level: 10A
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Numerical experiments GaAs laser degradation

Parameter estimation results — random effects:

A linear drift function is chosen based on experience.
Compared to models IG_FE and IG_NRE, the proposed
EIG model with SN random effects has the smallest AIC, and

therefore has the best degradation fitting performance.

NN TR
m 5.43E-5 490.65 - - /75.03 -146.06
m 6.09E-5 498.59 61.30 - 75.23 -144.46
m 6.09E-5 500.26 61.41 -29.70 77.18 -146.36




Numerical experiments GaAs laser degradation

Reliability assessment results — random effects :

® Present the empirical CDF of the 15 samples as dots.
® Plot the lifetime CDFs for the candidate models as lines.

® Calculate the MSEs of candidate models with the empirical CDF.
The proposed model IG_ SNRE can most precisely

estimate the lifetime distribution.
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Numerical experiments GaAs laser degradation

Parameter estimation results — measurement errors:

Compared to the existing models IG_0 and IG_SIME, the
proposed model IG SDME with statistically dependent
measurement error has the smallest AIC, and therefore has

the best degradation fitting performance.

o e e
m 5.43E-5 2.04E-3 - - 75.03 -146.06

m 5.44E-5 2.04E-3 9.00E-4 - 75.02 -144.04
m 5.12E-5 2.04E-3 2.96E-3 0.9917 77.69 -147.38



Numerical experiments Fatigue crack growth

Constant amplitude fatigue test:

® Sample size: 30
® Measurement interval: first after 10000 cycles and then
every 5000 cycles.

® Failure threshold level: 15
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Numerical experiments Fatigue crack growth

Analysis of random effects:

An exponential drift function is chosen.
5 candidate distribution forms are compared for the
Inverse slopes of 30 specimens, among which the skew-

normal distribution performs the best.

Normal 24.6104 -45.2208

Gamma 25.4566 -46.9132

Lognormal 24.3753 -44.7506

Weibull 25.5983 -47.1966

Skew-normal 26.8775 -47.755




Numerical experiments Fatigue crack growth

Parameter estimation results:

The proposed model IG SNREME, considering both

skew-normal random effects and measurement errors, has

the smallest AIC and best degradation fitting performance.

ENEEENEEEREAENDIES

92.69 0.2915 - - 0.2582 -41.49  88.99

204.17 0.2829 0.066 - 0.2428 -37.01 82.03

136.73 0.3093 0.077 0.8252 0.2680 -33.70 77.40

IG_SNR
EME

186.55 0.2805 0.070 0.8481 0.2509 2.54E-4 -32.63




Numerical experiments Fatigue crack growth

Reliability assessment results:

® Present the empirical CDF of the 30 specimens as dots.
® Plot the lifetime CDFs for the candidate models as dashes.

® Calculate the MSEs of candidate models with the empirical CDF.

The proposed model IG_SNREME can most precisely

estimate the lifetime distribution.

Candidate Model MSE 08
IG_FE 453E3  zu
IG_NRE 214E3  Zod
csvre  NERCECRENNCENNP/IS i
G_SNREME ~ [EMARE s

cycles(x 1 04)
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What has been done

v Extend the traditional IG process by incorporating

skew-normal random effects;
v Analytically assess the reliability for the EIG process;
v Propose a perturbed IG process model with
statistically dependent measurement error,
v Obtain the VMR of the perturbed IG process model;
v Verify the two degradation models by numerical

experiments of GaAs laser and fatigue crack growth.




What can be done in the future

0 Combination of both skew-normal random effects and

statistically dependent measurement errors;
O Degradation test planning and maintenance strategy
optimization for the extended and perturbed |G process;
0 Generalization of the IG process to have time-varying
VMR.




Thanks for listening!

Songhua Hao
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