

Degradation analysis based on the Inverse Gaussian Process model

Songhua Hao

PhD. Candidate, Beihang University, Beijing, China Visitor, Gipsa lab, Grenoble, France.

Research background

Degradation modelling Numerical experiments

Conclusion

PARTONE Research background

Reliability is defined as (ISO):

The ability of an item to perform a required function, under given environmental and operating conditions and for a stated period of time.

Failure: the item loses this ability.

Reliability data analysis:

Lifetime data;

degradation measurement.

Research background

Lifetime data analysis

Research background

Degradation analysis

New challenges:

- High-reliability and long-life products
- Temporal variability and unit-to-unit variability
- Dynamic decision-making in maintenance

Research background The inverse Gaussian process

- Statistically independent degradation increments;
- $Y_0(t) Y_0(s)$ follows an IG distribution $IG(\beta \Delta \Lambda(t), \eta \Delta \Lambda^2(t))$.
- ✓ better fitting results for the GaAs laser degradation.

Wang & Xu (2010): An Inverse Gaussian Process Model for Degradation Data

Problems for the IG process

Symmetric and normal random effects

 $X_0(t) - X_0(s) \sim IG\big(\beta \Delta \Lambda(t), \eta \Delta \Lambda^2(t)\big), \beta^{-1} \sim N(\mu, \sigma^2)$

AIC

183.63

184.61

185.33

182.29

178.98

Constant variance-to-mean ratio (VMR)

For the additivity of the IG distributions $IG(\beta\Delta\Lambda(t), \eta\Delta\Lambda^2(t))$.

Degradation modelling

PART TWO

1 SN random effects 2 time varying VMR

Degradation model $\{X_0(t), t \ge 0\}$:

- Statistically independent degradation increments;
- Degradation level $X_0(t)$ follows IG distribution:

$$F_{X_0}(x) = \Phi\left[\sqrt{\frac{\eta \Lambda^2(t)}{x}} \left(\frac{x}{\beta \Lambda(t)} - 1\right)\right] + \exp\left\{\frac{2\eta \Lambda(t)}{\beta}\right\} \Phi\left[-\sqrt{\frac{\eta \Lambda^2(t)}{x}} \left(\frac{x}{\beta \Lambda(t)} + 1\right)\right]$$

• $\delta = \beta^{-1}$ follows skew-normal distribution $SN(\mu, \sigma^2, \alpha)$:

$$f_{\delta}(u) = \frac{2}{\sigma} \phi\left(\frac{u-\mu}{\sigma}\right) \Phi\left(\alpha \frac{u-\mu}{\sigma}\right)$$

Reliability assessment:

 $R(t) = P\{X(\tau) \notin \Omega, \forall 0 \le \tau \le t\}, T = \inf\{t: X(t) \in \Omega\}$

Considering IG process is monotonous, its reliability can be simplified by:

$$F_{T_0}(t) = P\{X_0(t) > D\} = 1 - F_{X_0}(D)$$

If we consider SN random effects, lifetime CDF will be:

$$F_{T_2}(t) = \int_{-\infty}^{+\infty} F_{T_0}(t|u) f_{\delta}(u) \, du$$

$$= E_{\delta} \left[\Phi \left(-\sqrt{\frac{\eta \Lambda^{2}(t)}{x}} + \sqrt{\eta x} \delta \right) \right] + E_{\delta} \left[e^{2\eta \Lambda(t)\delta} \Phi \left(-\sqrt{\frac{\eta \Lambda^{2}(t)}{x}} - \sqrt{\eta x} \delta \right) \right]$$

Reliability assessment:

For $V \sim SN(\mu, \sigma^2, \alpha)$, the computations of $E_V[\Phi(A + BV)]$ and $E_V[e^{CV}\Phi(A + BV)]$:

(1) $I(a_1, a_2, b_1, b_2) = \int_{-\infty}^{+\infty} \Phi(a_1 + b_1 x) \Phi(a_2 + b_2 x) \phi(x) dx;$ (2) Based on Dominated Convergence Theorem, compute the second order partial derivative of $I(a_1, a_2, b_1, b_2)$ with respect to $a_1, a_2;$

(3) Integrate it over $a_1, a_2;$

(4) With some changes of variables, obtain the results.

Parameter estimation:

Test data: $x_{n,m} = x(t_{n,m})$ denotes the m^{th} degradation measurement of sample n; $\Delta x_{n,m} = x_{n,m} - x_{n,m-1}$. Log-Likelihood function: $L(x) = \sum_{n=1}^{N} \sum_{m=1}^{M} \ln f_{\Delta X}(\Delta x_{n,m})$ where

$$f_{\Delta X}(x) = \int_{-\infty}^{+\infty} f_{\Delta X_0}(x|\delta = \beta^{-1} = u) f_{\delta}(u) du$$
$$= E_{\delta} \left[\sqrt{\frac{\eta \Delta \Lambda^2(t)}{2\pi x^3}} \exp\left\{ -\frac{\eta}{2x} [x^2 \delta^2 - 2\Delta \Lambda(t) x \delta + \Delta \Lambda^2(t)] \right\} \right]$$

Maximize L(x) and obtain the MLEs of $\Theta = \{\theta_A, \eta, \mu, \sigma, \alpha\}$. 14

a perturbed IG process model $\{Y(t), t \ge 0\}$:

$$Y_k = X_k + \varepsilon_k$$

where $Y_k = Y(t_k)$, $X_k = X(t_k)$, $\varepsilon_k = \varepsilon(t_k)$ are respectively the measured degradation, actual degradation and measurement error (ME) at t_k .

• Statistically independent ME: $\varepsilon_k \sim N(0, \sigma_{\varepsilon}^2)$:

 $E[Y(t)] = \beta \Lambda(t)$

$$Var[Y(t)] = \frac{\beta^3}{\eta} \Lambda(t) + \sigma_{\varepsilon}^2$$

$$VMR[Y(t)] = \frac{\beta^2}{\eta} + \frac{\sigma_{\varepsilon}^2}{\beta\Lambda(t)}$$

Time varying VMR

a perturbed IG process model $\{Y(t), t \ge 0\}$:

$$Y_k = X_k + \varepsilon_k$$

• Statistically dependent ME: $\varepsilon_k \sim N(0, \sigma_{\varepsilon_k}^2(x_k))$:

$$f_{\varepsilon_k|X_k}(z|x_k) = \frac{1}{\sqrt{2\pi}\sigma_{\varepsilon_k}(x_k)} exp\left[-\frac{z^2}{2\sigma_{\varepsilon_k}^2(x_k)}\right]$$

• Reliability assessment:

$$F_{T}(t) = P\{X(t) < D\}$$

$$= \Phi\left[\sqrt{\frac{\eta \Lambda^{2}(t)}{D}} \left(\frac{D}{\beta \Lambda(t)} - 1\right)\right] + \exp\left\{\frac{2\eta \Lambda(t)}{\beta}\right\} \Phi\left[-\sqrt{\frac{\eta \Lambda^{2}(t)}{D}} \left(\frac{D}{\beta \Lambda(t)} + 1\right)\right]$$

VMR for the perturbed IG process model:

$$VMR(Y_k) = \frac{\beta^2}{\eta} + \frac{\sqrt{\eta}}{\sqrt{2\pi\beta}} \int_0^{+\infty} \sigma_{\varepsilon_k}^2(x_k) x^{-\frac{3}{2}e^{-\frac{\eta[x-\beta\Lambda(t_k)]^2}{2\beta^2x}}} dx$$

(1) On condition of X_k , Y_k follows a normal distribution:

$$f_{Y_k|X_k}(y|x_k) = f_{\varepsilon_k|X_k}(y - x_k|x_k)$$

(2) Conditional expectation and variance:

$$E[Y_k|X_k = x_k] = x_k, Var(Y_k|X_k = x_k) = \sigma_{\varepsilon_k}^2(x_k)$$

(3) Unconditional expectation and variance:

$$E(Y_k) = E_X[E_Y(Y_k|x_k)] = \beta \Lambda(t_k)$$

 $Var(Y_k) = E_X[Var(Y_k|x_k)] + Var_X[E(Y_k|x_k)]$

VMR for the perturbed IG process model:

Assume a flexible power function: $\sigma_{\varepsilon_k}(x_k) = a x_k{}^b, a, b > 0$. Depending on different values of a, b, the VMR of the proposed model can display various kinds of trends:

9

Parameter estimation:

The introduction of ME makes that the measured degradation increments are no longer independent. Based on the concept of conditional probability, the likelihood function can be expressed as:

$$L(y;\Theta) = \prod_{i=1}^{n} f_{Y_{i,1}}(y_{i,1}) f_{Y_{i,2}|Y_{i,1}}(y_{i,2}|y_{i,1}) \cdots f_{Y_{i,m_i}|Y_{i,m-1}}(y_{i,m_i}|y_{i,m_i-1})$$

where $y_{i,k} = y(t_{i,k})$ is the measured degradation performance, and $f_{Y_{i,k}|Y_{i,k-1}}(y_{i,k}|y_{i,k-1})$ is the PDF of $y_{i,k}$ conditioned on $y_{i,k-1}$.

Time varying VMR

Parameter estimation:

The conditional PDF $f_{Y_{i,k}|Y_{i,k-1}}(y_{i,k}|y_{i,k-1})$ can be computed in the following step-by-step way.

$$Y_{i,k-1} = X_{i,k-1} = X_{i,k} = Y_{i,k}$$

$$(1) \quad f_{X_{i,k-1}|Y_{i,k-1}}(v|y_{i,k-1}) = \frac{f_{Y_{i,k-1}|X_{i,k-1}}(y_{i,k-1}|v) \cdot f_{X_{i,k-1}}(v)}{\int_{0}^{+\infty} f_{Y_{i,k-1}|X_{i,k-1}}(y_{i,k-1}|u) f_{X_{i,k-1}}(u) du}$$

$$(2) \quad f_{X_{i,k}|Y_{i,k-1}}(w|y_{i,k-1}) = \int_{0}^{+\infty} f_{X_{i,k}|X_{i,k-1}}(w|v) \quad f_{X_{i,k-1}|Y_{i,k-1}}(v|y_{i,k-1}) dv$$

$$(3) \quad f_{Y_{i,k}|Y_{i,k-1}}(y_{i,k}|y_{i,k-1}) = \int_{0}^{+\infty} f_{Y_{i,k}|X_{i,k}}(y_{i,k}|w) \quad f_{X_{i,k}|Y_{i,k-1}}(w|y_{i,k-1}) dw$$

Numerical experiments

1 simulation study 2 two case studies

PART THREE

Performance of the parameter estimation methods:

- Power drift function: $\Lambda(t) = t^b$
- 1000 repetitions to calculate bias and standard deviations
- The MLEs can accurately estimate the model parameters
- The estimation accuracy increases with sample size

Sample size	$\mu = 2$	$\sigma = 0.2$	$\alpha = 5$	$\eta = 2$	<i>b</i> = 1.2
30	0.0747	-0.0201	0.0261	0.0143	0.0035
	(0.1441)	(0.0343)	(0.2459)	(0.2655)	(0.0174)
60	0.0713	-0.0149	0.0205	0.0119	0.0032
	(0.1435)	(0.0271)	(0.2430)	(0.2620)	(0.0161)
90	0.0460	-0.0128	0.0235	0.0078	0.0015
	(0.1397)	(0.0264)	(0.2553)	(0.2517)	(0.0162)

Lifetime estimation accuracy with mis-specification:

- Simulate degradation data under the proposed model
- 2 Estimate and compare three candidate models
- the true model can be selected with the lowest MSE

GaAs laser degradation

GaAs laser device degradation experiment:

- Sample size: 15
- Inspection interval: 250 hours.
- Failure threshold level: 10A

Parameter estimation results – random effects:

A linear drift function is chosen based on experience.

Compared to models IG_FE and IG_NRE, the proposed

EIG model with SN random effects has the smallest AIC, and therefore has the best degradation fitting performance.

	η	μ	σ	α	L _{max}	AIC
IG_FE	5.43E-5	490.65	-	-	75.03	-146.06
IG_NRE	6.09E-5	498.59	61.30	-	75.23	-144.46
IG_SNRE	6.09E-5	500.26	61.41	-29.70	77.18	-146.36

Numerical experiments

26

Reliability assessment results – random effects :

- Present the empirical CDF of the 15 samples as dots.
- Plot the lifetime CDFs for the candidate models as lines.
- Calculate the MSEs of candidate models with the empirical CDF.
 The proposed model IG_SNRE can most precisely estimate the lifetime distribution.

Parameter estimation results – measurement errors:

Compared to the existing models IG_0 and IG_SIME, the proposed model IG_SDME with statistically dependent measurement error has the smallest AIC, and therefore has the best degradation fitting performance.

	η	β	а	b	L _{max}	AIC
IG_0	5.43E-5	2.04E-3	-	-	75.03	-146.06
IG_SIME	5.44E-5	2.04E-3	9.00E-4	-	75.02	-144.04
IG_SDME	5.12E-5	2.04E-3	2.96E-3	0.9917	77.69	-147.38

Fatigue crack growth

Constant amplitude fatigue test:

- Sample size: 30
- Measurement interval: first after 10000 cycles and then every 5000 cycles.
- Failure threshold level: 15

Analysis of random effects:

An exponential drift function is chosen.

5 candidate distribution forms are compared for the inverse slopes of 30 specimens, among which the skew-normal distribution performs the best.

Distribution type	L	AIC
Normal	24.6104	-45.2208
Gamma	25.4566	-46.9132
Lognormal	24.3753	-44.7506
Weibull	25.5983	-47.1966
Skew-normal	26.8775	-47.755

Parameter estimation results:

The proposed model IG_SNREME, considering both skew-normal random effects and measurement errors, has the smallest AIC and best degradation fitting performance.

	η	μ	σ	α	γ	$\sigma_{arepsilon}$	L _{max}	AIC
IG_FE	92.69	0.2915	-	-	0.2582		-41.49	88.99
IG_NRE	204.17	0.2829	0.066	-	0.2428		-37.01	82.03
IG_SNRE	136.73	0.3093	0.077	0.8252	0.2680		-33.70	77.40
IG_SNR EME	186.55	0.2805	0.070	0.8481	0.2509	2.54E-4	-32.63	77.26

Reliability assessment results:

- Present the empirical CDF of the 30 specimens as dots.
- Plot the lifetime CDFs for the candidate models as dashes.
- Calculate the MSEs of candidate models with the empirical CDF.
 The proposed model IG_SNREME can most precisely
 estimate the lifetime distribution.

- ✓ Extend the traditional IG process by incorporating skew-normal random effects;
- Analytically assess the reliability for the EIG process;
 Propose a perturbed IG process model with statistically dependent measurement error;
- ✓ Obtain the VMR of the perturbed IG process model;
- ✓ Verify the two degradation models by numerical experiments of GaAs laser and fatigue crack growth.

Combination of both skew-normal random effects and statistically dependent measurement errors;
 Degradation test planning and maintenance strategy optimization for the extended and perturbed IG process;
 Generalization of the IG process to have time-varying VMR.

Thanks for listening!

Songhua Hao

