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01 Research background
PART ONE



Research background Reliability analysis

Reliability is defined as (ISO):

 The ability of an item to perform a required function,

under given environmental and operating conditions and

for a stated period of time.

Failure: the item loses this ability.
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Reliability data analysis:

 Lifetime data;

 degradation measurement.



Lifetime data analysis
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Degradation analysis

New challenges:

 High-reliability and long-life products

 Temporal variability and unit-to-unit variability

 Dynamic decision-making in maintenance
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Research background
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The inverse Gaussian process
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Research background

Wang & Xu (2010): An Inverse Gaussian Process Model for Degradation Data

 better fitting results for the GaAs laser degradation.



Problems for the IG process
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Research background

 Symmetric and normal random effects

Distribution 
type L AIC

Normal -89.8168 183.63

Gamma -90.3049 184.61

Lognormal -90.6636 185.33

Weibull -89.1474 182.29

Skew-normal -87.4892 178.98



Problems for the IG process
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02 Degradation modelling
① SN random effects ② time varying VMRPART TWO



Skew-normal random effects
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Degradation modelling



Skew-normal random effects
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Degradation modelling

If we consider SN random effects, lifetime CDF will be:



Skew-normal random effects
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Degradation modelling



Skew-normal random effects
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Degradation modelling



Time varying VMR
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Degradation modelling



Time varying VMR
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Degradation modelling

 Reliability assessment:



Time varying VMR
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Degradation modelling



Time varying VMR
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Degradation modelling



Time varying VMR
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Degradation modelling



Time varying VMR
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Degradation modelling



03 Numerical experiments
① simulation study ② two case studiesPART THREE



Simulation study
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Numerical experiments

Sample size

30
0.0747

(0.1441)
-0.0201
(0.0343)

0.0261
(0.2459)

0.0143
(0.2655)

0.0035
(0.0174)

60
0.0713

(0.1435)
-0.0149
(0.0271)

0.0205
(0.2430)

0.0119
(0.2620)

0.0032
(0.0161)

90
0.0460

(0.1397)
-0.0128
(0.0264)

0.0235
(0.2553)

0.0078
(0.2517)

0.0015
(0.0162)



Simulation study
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Numerical experiments

Lifetime estimation accuracy with mis-specification:

① Simulate degradation data under the proposed model

② Estimate and compare three candidate models

 the true model can be selected with the lowest MSE

Candidate Model MSE

IG_FE 1.91E-3

IG_NRE 3.62E-3

IG_SNRE 5.68E-04



GaAs laser degradation
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Numerical experiments

GaAs laser device degradation experiment:

 Sample size: 15

 Inspection interval: 250 hours.

 Failure threshold level: 10A



GaAs laser degradation
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Numerical experiments

Parameter estimation results – random effects:

A linear drift function is chosen based on experience.

Compared to models IG_FE and IG_NRE, the proposed

EIG model with SN random effects has the smallest AIC, and

therefore has the best degradation fitting performance.

AIC

IG_FE 5.43E-5 490.65 - - 75.03 -146.06

IG_NRE 6.09E-5 498.59 61.30 - 75.23 -144.46

IG_SNRE 6.09E-5 500.26 61.41 -29.70 77.18 -146.36



GaAs laser degradation
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Numerical experiments

Reliability assessment results – random effects :
 Present the empirical CDF of the 15 samples as dots.

 Plot the lifetime CDFs for the candidate models as lines.

 Calculate the MSEs of candidate models with the empirical CDF.

The proposed model IG_SNRE can most precisely

estimate the lifetime distribution.

Candidate Model MSE

IG_FE 5.21E-3

IG_NRE 2.22E-3

IG_SNRE 1.62E-3



GaAs laser degradation
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Numerical experiments

Parameter estimation results – measurement errors:

Compared to the existing models IG_0 and IG_SIME, the

proposed model IG_SDME with statistically dependent

measurement error has the smallest AIC, and therefore has

the best degradation fitting performance.

AIC

IG_0 5.43E-5 2.04E-3 - - 75.03 -146.06

IG_SIME 5.44E-5 2.04E-3 9.00E-4 - 75.02 -144.04

IG_SDME 5.12E-5 2.04E-3 2.96E-3 0.9917 77.69 -147.38



Fatigue crack growth 
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Numerical experiments

Constant amplitude fatigue test:

 Sample size: 30

 Measurement interval: first after 10000 cycles and then

every 5000 cycles.

 Failure threshold level: 15



Fatigue crack growth 
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Numerical experiments

Analysis of random effects:

An exponential drift function is chosen.

5 candidate distribution forms are compared for the

inverse slopes of 30 specimens, among which the skew-

normal distribution performs the best.
Distribution type L AIC

Normal 24.6104 -45.2208

Gamma 25.4566 -46.9132

Lognormal 24.3753 -44.7506

Weibull 25.5983 -47.1966

Skew-normal 26.8775 -47.755



Fatigue crack growth 
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Numerical experiments

Parameter estimation results:

The proposed model IG_SNREME, considering both

skew-normal random effects and measurement errors, has

the smallest AIC and best degradation fitting performance.

AIC

IG_FE 92.69 0.2915 - - 0.2582 -41.49 88.99

IG_NRE 204.17 0.2829 0.066 - 0.2428 -37.01 82.03

IG_SNRE 136.73 0.3093 0.077 0.8252 0.2680 -33.70 77.40

IG_SNR

EME
186.55 0.2805 0.070 0.8481 0.2509 2.54E-4 -32.63 77.26



Fatigue crack growth 
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Numerical experiments

Reliability assessment results:
 Present the empirical CDF of the 30 specimens as dots.

 Plot the lifetime CDFs for the candidate models as dashes.

 Calculate the MSEs of candidate models with the empirical CDF.

The proposed model IG_SNREME can most precisely

estimate the lifetime distribution.

Candidate Model MSE

IG_FE 4.53E-3

IG_NRE 2.14 E-3

IG_SNRE 1.70 E-3

IG_SNREME 1.66 E-3



04 Conclusion
PART FOUR
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Conclusion

 Extend the traditional IG process by incorporating

skew-normal random effects;

 Analytically assess the reliability for the EIG process;

 Propose a perturbed IG process model with

statistically dependent measurement error;

 Obtain the VMR of the perturbed IG process model;

 Verify the two degradation models by numerical

experiments of GaAs laser and fatigue crack growth.

What has been done
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Conclusion

 Combination of both skew-normal random effects and

statistically dependent measurement errors;

 Degradation test planning and maintenance strategy

optimization for the extended and perturbed IG process;

 Generalization of the IG process to have time-varying

VMR.

What can be done in the future



Thanks for listening！
Songhua Hao
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