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Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Part I

Background & Motivation

3 / 56



Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Proton Exchange Membrane (PEM) fuel cell
I Energy transition

Hydrogen
I Promising alternative transition

device
Fuel Cells

I PEM Fuel Cell
I Low temperature 80oC-100oC
I Small size

Single cell : 100 cm2

P ≈ 0.4 W/cm2

I High efficiency
η ≈70%

I Tailorable power
. . .
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Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Stack and cell

I Anode:

H2 → 2H+ + 2e−

I Cathode:
1

2
O2 + 2H+ + 2e− → H2O

I Overall:
1

2
O2 +H2 → H2O

5 / 56



Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Balance of Plant

PEMFC

Subsystems
I Reactant conditioning

tank, pumps, valves,. . .

I Electronic conditioning
regulator, controller, . . .

I Thermal management
heat exchanger, . . .

6 / 56



Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Balance of Plant

PEMFC

Subsystems
I Reactant conditioning

tank, pumps, valves,. . .

I Electronic conditioning
regulator, controller, . . .

I Thermal management
heat exchanger, . . .

A PEM fuel cell test bench in FCLAB

6 / 56



Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Challenges

Issues
I Poor health management (Faults)
I Materials and interfaces degradation (Aging)

Consequences
I Performance degradation
I Lifespan limitation

Challenges
I Enhance reliability
I Better manage lifespan

⇒ Prognostic and Health Management
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Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Prognostics and Health Management (PHM)
I Recent dynamic approach to monitor, analyze and master the

Remaining Useful Life (RUL) of industrial systems

I Pioneering technique in fuel cells technologies
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Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Remaining Useful Life (RUL)

Measurements
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Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Difficulties

I Degradation can be different:

I irreversible (e.g. due to material deterioration)
I reversible (e.g. due to operating conditions)

I Degradation can be generated at different levels

⇒ Observed from different measurements
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Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Degradation measurements
Stack voltage (or power)
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⇒ Use multiple measurements

11 / 56



Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Degradation measurements
Stack voltage (or power)

0 200 400 600 800 1000 1200
Time (h)

3.15

3.2

3.25

3.3

3.35

V s
t(
V
)

Ageing

Polarization curves

0 0.2 0.4 0.6 0.8 1
j (A=cm2)

2.5

3

3.5

4

4.5

5

V
st

(V
)

t=0h
t=48h
t=185h
t=348h
t=515h
t=658h
t=823h
t=991h

Ageing

Electrochemical Impedance Spectroscopy
(EIS)

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
ZRe (Ω)

-8

-6

-4

-2

0

2

4

-Z
Im
(Ω
)

x 10-3

t= 0h
t= 48h
t= 185h
t= 348h
t= 515h
t= 658h
t= 823h
t= 991h

Low freq.

High freq.

Ageing

I Classical measurements
Voltage, Power

I State of Health (SOH) measurements
EIS, Polarization

⇒ Use multiple measurements
11 / 56



Proton Exchange Membrane Fuel Cells Prognostic and Health Management Problem Statement

Objectives and contributions

1 RUL prediction (on real application data) with taking into account
both irreversible and reversible degradation

I An approach using both stack power and SOH
characterization measurements

2 Extension to multi-level prognostics

I Degradation covariate inspection scheme to gather
additional information from measurements at different level

I An Ensemble-based approach to aggregate RUL
predictions from different measurements at different levels
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Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

Part II

Remaining Useful Life Prediction of
PEM fuel cell
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Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

Particle Filtering-based prognostics
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Acquire degradation
from measurements

Estimator uses large amount of randomness to approach the truth

I Technique for implementing Recursive Bayesian filter by Monte
Carlo sampling

I Nonlinear, non Gaussian model tracking
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Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

Particle Filtering (PF)

Particles distribution

Propagate particles 

Importance sampling

Compare with measurement

Particles with corresponding weights are used to
form an approximation of PDF

1 Split initial state into particles

xt−1 → {xit−1}Ni=1

2 Propagate particles through the transition
function

xit = f(xit−1, ω
i
t−1)→ p(xt|xt−1)

3 Importance sampling

W i
t ∝ p(zt|xit)→ xi∗t

4 Re-sampling

{xi∗t−1}Ni=1 → p(x∗t |zt)
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Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

Prognostic performance
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Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

Application data (test bench FCLAB)

I Two PEM fuel cell stacks under operation degrade
I Stack power measurements are used as the degradation

indicator
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Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

Difficulty

Reversible degradation
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Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

Electrochemical Impedance Spectroscopy (EIS) data
EIS measurements
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Kim, T. et al., (2014). A degenerated equivalent circuit model and hybrid prediction for state-of-health (SOH) of PEM

fuel cell. In: 2014 International Conference on Prognostics and Health Management. pp. 1-7. 19 / 56



Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

State transition model

Hypothesis

I Reversible degradation is related to Rpol
I Rpol can be estimated from EIS

xc = xk + α1(Rpol) · exp (−β1(Rpol) · (tk − tk−1))

xk = α · (tk − tk−1)2 − β · (tk − tk−1) + xk−1
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Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

Results (FC2)
Estimation with classical model
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Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

Prognostic performance

RUL predictions of FC1
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RUL predictions of FC2
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Performance metrics

FC 1 FC 2
Acc aAc Prc Std Acc aAc Prc Std

Classical 0.67 0.29 0.89 0.06 0.48 0.11 0.69 0.17
Proposed 0.86 0.42 0.68 0.06 0.72 0.34 0.74 0.12
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Particle Filtering-based Prognostics RUL Prognosis on Stack Power RUL Prognosis Considering Recovery

Summary

Challenge accomplished:
I RUL predictions of PEM fuel cell application with taking

into reversible degradation
I Reversible degradation has been investigated by using the

information of Rpol

I Prediction quality has been improved by using additional
information from SOH characterization

How to generalize the use of degradation related information
⇒ Introduce covariates to the degradation model
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Part III

Multi-level Prognostics Using Online
Inspection of Degradation

Covariates
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Problem statement
P
e
rf

o
rm

a
n
ce

C
o
v
a
ri
a
te

s

Degradation path

Failure threshold

Cause 1

Cause 2

Time

Time

Degradation
I Continuously monitored with

simple measurements

I Affected by the change of
covariates

Assumption
Possible to inspect the covariates
with extra cost

Objective
Use the information of covariates
for RUL prediction
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How?

Design a degradation covariate inspection scheme
I When and how to apply an inspection on covariates (that

costs)
I Ensure the prognostic quality
I Minimize the inspection cost

26 / 56



Problem statement Problem formulation Numerical experiment Results and summary

General modeling assumptions

I Evolution of the degradation follows a stochastic process:

xk = fk(xk−1,Θk)

I Impacts of covariates on the degradation model parameter can
be quantified and modeled:

Θk = gk(ck)

⇒ Possible to update the degradation model by inspecting the
degradation covariate with cost
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Cost of the covariate inspection

Global cost

J = Jinspection(Nins) + Jestimation(ε̂)

I Inspection incurs application cost

I Inaccurate estimation leads to
prognostic quality cost

Co
st

Nins

J(  )

J(Nins)

J

Find the optimal trade-off

Method
Two decision variables:

I inter-inspection period τ → number of inspections Nins

I error threshold ET → estimation error ε̂
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Covariates inspection schemes
 

Pe
rf
or
m
an
ce

Co
va
ri
at
es

Failure	threshold

Time

Time

Inspection

Estimation	error
 

Degradation	path
Without	inspection
With	inspection

Periodic inspection
Performed regularly at fixed
time intervals τ

Online inspection
Triggered online when the
accumulated estimation
error reaches an error
threshold ET
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Degradation example
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C

High

Low

0 200 400 600 800 1000
Time (h)

Simulated by a state transition
function 2:

xk = xk−1 · exp(−bk(ck) ·∆t)

The presence of covariate ck
impacts the degradation
behavior by changing trend
parameter bk.

2
An, D., Choi, J.H., and Kim, N.H. (2013). Prognostics 101: A tutorial for particle filter-based prognostics algorithm

using Matlab.Reliab. Eng. Syst. Saf., 115, 161-169.
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Degradation estimation examples
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Decision variables

Periodic inspection

0 100 200 300 400 500
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τ (h)

J 
(€

)

Inter-inspection period τ∗ ' 100h

Online inspection

Error threshold ET ∗ = 4%
Minimum inter-inspection period τ∗h = 50h
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Different inspection schemes

Periodic covariate inspection

0 200 400 600 800 1000

0

0.5

1

1.5

True covariate value
Used covariate value
inspection
Covariate value switch

Time (h)

c

Online covariate inspection

0 200 400 600 800 1000
Time (h)

0

0.5

1

1.5

True covariate value
Used covariate value
inspection
Covariate value switch

c

Error of periodic inspection

Time (h)

Average error
inspection
Covariate value switch

Error of online inspection

0 200 400 600 800 1000
Time (h)

0

2

4

6

8

10
(%
)

Average error
Error threshold
inspection
Covariate value switch

32 / 56



Problem statement Problem formulation Numerical experiment Results and summary

RUL predictions results

RUL predictions without inspection
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Cost and prognostic performance

Without inspection Periodic ∼ Online ∼
Acc 0 0.54 0.27
αAc 0 0.53 0.36
ε̂(%) 69.19 20.73 28.91
Nins – 215 110
J (e) 692 422 399
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Summary

Challeng accomplished:
I RUL prediction using the information from inspections of

covariate
I Two covariate inspection schemes: online and periodic
I Online inspection scheme helps to minimize the cost by

avoiding unnecessary inspection

⇒ A different way of using degradation related information at
different levels
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Part IV

Multi-level Prognostics Using
Different Sources of Degradation

Information3

3Work in this section has been partly done during an international mobility in
the Laboratory of signal and risk analysis (LASAR) at Politecnico di Milano
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Problem statement
Stack voltage vs. time

0 200 400 600 800 1000 1200
Time (h)

3.15

3.2

3.25

3.3

3.35

V
st

(V
)

Ageing

Polarization measurement

Degradation of a stack observed from different measurements:
I External measurement: measured frequently, "poor quality" (voltage)
I Internal characterization: less frequently, "good quality" (polarization)

Objective
Aggregate RUL predictions from both measurements to improve global RUL
quality
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Polarization model

The output voltage of a stack at a given current density J 4:

Vst(J) = n · {E − r · J −A · ln(
J

j0
)−m1 · exp(m2 · J)}

Vst : stack voltage
n: number of cells in the stack
E: open circuit voltage
r: internal resistance
J : operating current density
A: Tafel coefficient
j0: exchange current density

m1 and m2: mass-transfer constants

Time impact on model
parameters

4
J. Larminie and A. Dicks, Fuel cell systems explained. Wiley, 2003.
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Polarization model
The output voltage of a stack at a given current density J 4:

Vst(J) = n · {E − r · J −A · ln(
J

j0
)−m1 · exp(m2 · J)}

Vst : stack voltage
n: number of cells in the stack
E: open circuit voltage
r: internal resistance
J : operating current density
A: Tafel coefficient
j0: exchange current density

m1 and m2: mass-transfer constants

Time impact on model
parameters

Identify model parameters

Parameters estimation results
Time (h) E (V) r (Ω cm2)

0 1,055 0,190
48 1,054 0,193

185 1,052 0,202
348 1,051 0,204
515 1,051 0,206
658 1,047 0,211
823 1,043 0,219
991 1,044 0,208

4
J. Larminie and A. Dicks, Fuel cell systems explained. Wiley, 2003.
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SOH degradation model

0 200 400 600 800 1000
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r(t) = r0 · (1 + γ(t))
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E(t) = E0 · (1− γ(t))

SOH degradation model γ(t) of a PEM fuel cell 5

I Definition: degradation rate of E(t) and r(t)

I Assumption: availability of a procedure which returns an
estimation of γ(t) from polarization measurements

5
Bressel et al.,"Remaining Useful Life Prediction and Uncertainty Quantification of Proton Exchange Membrane Fuel
Cell Under Variable Load," IEEE Trans. Ind. Electron., vol.63, no.4, pp.2569-2577, 2016.

39 / 56



Problem statement Degradation Models Ensemble-based Approach Numerical Experiment Summary

RUL aggregation
I SOH degradation γ(t)

I Voltage degradation Vst(t) driven by γ(t)

 

Ensemble

Prognostic procedure 
based on Vst(t)

Prognostic procedure 
based on γ(t)

SOH 
Measurement 

Voltage
Measurement

 
RUL(1)t

RUL(2)t

W(1)
t

W(2)
t

R̂ULt =

M∑
i=1

W i
t · R̂UL

i

t

p(R̂ULt) =
M∑
i=1

W i
t · p(R̂UL

i

t)

R̂ULt: the ensemble outcome for the RUL prediction
RULit: RUL prediction by each ith individual model
M : the number of models

W i
t : local weights (non-negative and sum to 1).
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Local weight Wt determination

R̂ULt = W
(1)
t · R̂UL

(1)

t +W
(2)
t · R̂UL

(2)

t

Why: to benefit from both measurements
I “good” RUL quality→ large weight
I “poor” RUL quality→ small weight

How
I Evaluated locally on a similar training set (historical data)
I Weights are recomputed at each time step
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Ensemble-based approach

RUL(1)t,k
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}
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Step 1: Trajectories retrieval Step 2: Weight determination

Step 4: RUL aggregation
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Test trajectory
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Step 3: RUL predictions
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Ensemble-based approach
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Step 2: Weights determination
I Ns similar trajectories retrieved
I Local error:

LE
(1)
t,j = 1

Ns

Ns∑
k=1

|R̂UL
(1)

t,k −RUL∗t,k|

I Local weight:

W
(1)
t,j =

1/LE
(1)
t,j

1/LE
(1)
t,j + 1/LE

(2)
t,j
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Ensemble-based approach
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Numerical experiment

Simulation objective
Produce realistic signals:

I signal variability and randomness from stack to stack
I dependency between two types of measurement

Simulated signals synthesis
I Two types of measurement: γ(t) and Vst(t)
I Ad hoc simulations based on dependent stochastic

processes (Gamma process)
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Simulated signals

I SOH degradation γ(t)

I Voltage degradation Vst(t) driven by γ(t)

Vst(t) = f (E(t), r(t), J(t))

{
E(t) = E0 · (1− γ(t))

r(t) = r0 · (1 + γ(t))
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Simulated signals

I SOH degradation γ(t)
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Simulated signals
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RUL prediction results

Estimation of γ(t)

Time (h)
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RUL aggregation

Individual RUL
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RUL aggregation

Individual RUL
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RUL aggregation

Aggregated RUL
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RUL aggregation

Aggregated RUL uncertainty
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Performance evaluation

Average performance on 50 test trajectories:

Performance Model 1 Model 2 Ensemble
Point value PDF

Acc 0.52 0.12 0.55 0.56
αAc 0.31 0.24 0.54 0.49
Std 0.16 0.14 0.07 0.07

* Prediction quality is improved with different configurations
I different process variances
I different signals’ dependencies
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Summary

I RUL prediction quality has been evaluated on historical
data

I Weights have been locally associated to individual
predictions from two different measurement signals

I Aggregated results provided better quality than individual
ones

I Ready for the application in PEM fuel cell when data
requirement is met
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Part V

Conclusion & Perspectives
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General Conclusion Perspectives Questions

General conclusion

Three main contributions:
1 Developed a PF-based approach for RUL prediction of

PEM fuel cell using deeper characterization information
2 Proposed an online inspection of degradation covariate at

different level to adapt RUL prediction
3 Proposed an Ensemble-based approach using degradation

information at different levels to improve the RUL prediction
quality
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General Conclusion Perspectives Questions

Perspectives

Short term
I Data involves varying usage profile for both development

and validation
I Inspection schemes based on simple cost function
→ consideration of more impacts, e.g. timeliness

Long term
I Validation of developed approaches with real-life data

should be envisaged to become commercially attractive
I Not limited to the framework of PEM fuel cell
→ adapt and extend to other applications
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Thank you !
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RUL uncertainty
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Proposition 1

Two indicators Vst(t) and γ(t) are generated from the same
realization of a Gamma degradation process, with different
additive noises.

γ(t) = γ(t− 1) + Γ(α∆t, β)

γi(t) = γi(t− 1) + Γ(αi∆t, βi)

{
γi1(t) = γi(t) +N (0, σ2

1(t))

γi2(t) = γi(t) +N (0, σ2
2(t))

→

{
γimeas(t) = γi(t) +N (0, σ2

ω1
(t))

Vst
i
meas(t) = V ist(t) +N (0, σ2

ω2
(t))

55 / 56



RUL uncertainties (Chapter 4) Dependent Gamma processes (Chapter 6)

Proposition 2

Two indicators Vst(t) and γ(t) are simulated from two
different degradation processes, yet the two processes are
dependent processes by construction.

G1(α1, β)

G2(α2, β)
→


a1 = α1 − ρ

√
α1α2 → gi1(a1, β)

a2 = α2 − ρ
√
α1α2 → gi2(a2, β)

a1 = ρ
√
α1α2 → gi1(a3, β)

→
Gi1 = gi1 + gi3

Gi2 = gi2 + gi3

{
γi1(t) = γi1(t− 1) +Gi1

γi2(t) = γi2(t− 1) +Gi2
→

{
γimeas(t) = γi(t) +N (0, σ2

ω1
(t))

Vst
i
meas(t) = V ist(t) +N (0, σ2

ω2
(t))
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